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Chapter 1: INTRODUCTION

Artificial intelligence has made significant advances in natural language processing in

recent years (NLP). The majority of development corporations are particularly interested in

NLP applications for QA tasks. QA is the process of a user submitting a natural language-

formatted query, which the language model subsequently answers concisely and correctly.

A perfect QA model would be able to interpret questions in real time with minimal training

data. As a result, text interpretation is required to obtain a relevant response to the ques-

tion. The process of creating a suitable response entails sorting through a huge number of

brief text fragments and categorizing them according to their calculated importance for the

question. As a result, the task is to collect these text fragments and categorise them in order

to answer the question while keeping the conversation’s context in mind.

Hence in this project, we aim to develop a QA systems that is not only able to search

the correct documents but also provides accurate answers to natural language questions. In

order to answer the questions in natural language, there is the necessity of more complex

text processing than that of currently available in information retrieval system. The back-

ground and user knowledge play a part in determining the answer because there are various

ways to describe the same answer. This makes it difficult for the QA system to identify

whether the two answers are equivalent (by combining and sorting responses), as well as to

assess the QA system’s results. Finding answers to definition inquiries is challenging be-

cause the term being defined is the only phrase available to focus the search. These terms

are frequently used in papers without being defined first. The application of a BERT model

trained using a big question-answer pair in the Romanian language is discussed in this ar-

ticle. Each question is self-contained and will be answered independently of the previous

one.

For designing a QA system, we will look at various QA, information retrieval, and

MRC datasets that are currently available. We’ll look at the differences in datasets in

terms of question domain breadth. We discuss various benchmark datasets such SQuAD,

QUASAR, TriviaQA, MS-MACRO, RACE, Narattive QA, and MCScript. We also explore

Open-Domain QA datasets such as DrQA and Wikipedia QA. In addition to this, we use

an specific QA dataset designed on Romanian language called Romanian QA Task. A

Romanian IT Dataset (RoITD) is a natural language dataset in Romanian with 9575 QA

pairs created by crowd workers. Apart from the basic RoITD dataset, we extend this to

classification task as pre-information retrieval technique. We use the RoITD dataset to

build a domain classification depending on the type of query. Question classification is
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an example of such a task. It assists in restricting the search area to a certain sort of

query, allowing for much better response in QA tasks. We manually labelled this Romanian

Question Classification (RQC) datasets based on the type of questions. The types used are

“Ce”, “Cum”, “De ce”, “Care”, “Unde”, “Când”, and “Caror”. For making classification

efficient we remove these WH question for training the model.

We then evaluate the RQC task on various classifier such as Support Vector Machine,

Naive Bayes, Decision Trees, and Tsetlin Machine. We basically select these baselines

because of their simplicity and interpretable mechanism. Since this RQC is a simple classi-

fication task, and the motivation is to design a simple and interpretable model.Here we have

used Macro-F1 and Micro-F1 because of unbalanced labels in RQC. From the experiments

we show that all the classifier performs quite similar except Naive Bayes which performs

poorer than the rest of the model. Result suggests that Naive Bayes are learning only the

samples with highest number of labels ignoring the smaller class because of low Macro-F1

and Micro-F1. Even though the performance of other models are similar, Tsetlin Machine

outperforms all of them with slight margin in both Macro-F1 and Micro-F1.

In addition to this we discuss various existing outliner Detection methods moslty fo-

cusing on VAE-GAN Based Zero-shot Outlier Detection. This study developed a unique

generative deep learning model based on Generative Adversarial Networks (GAN) and

Variational AutoEncoders (VAE) that uses uniform distributions generated by variational

autoencoders to distinguish inliers from outliers. We then discuss the results on RoITD out-

liner detection. We demostrate the performance of differnt outliner detection algorithms on

RoITD dataset along witht he Alphagan Test Loss Distance. At last we use Alphagan

Visualization to demosntrate the data points and Outliner scores.

We then propose different pipelines to extract the answers. We propose to use Haystack

as the platform for huge document collection to design an end-to-end QA system. One of

the main criteria to use Haystack is the ability to integrating the pretrained models from

Huggingface. We used RoITD dataset to train various QA model that includes different

variants of BERT and their variants. In order to design an chatbot interface, we imple-

mented model in Google Cloud Services (GCS). GCS is then used in conjunction with

Google Dialogflow to create a chatbot interface. Pepper is then linked to the dialogflow,

which collects the response and displays it to the user. We use Bayesian Inference to im-

prove the QA system. Bayesian inference is used to find the next best response. We were

able to confirm our hypothesis that suppressing the top prediction and up-dating the likeli-

hood of the remaining tokens would cause the model to explore more choices, resulting in

a higher recall.
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Finally, we looked at knowledge graphs for answering questions. Despite substantial

improvements in QA processes over the previous decade, the most accurate contemporary

methods combine the language model (LM) with the knowledge graph (KG). To combine

these strategies, the model must be capable of extracting data from a large KG and conduct-

ing joint reasoning between the QA context and the KG structure. In all brevity, this thesis

deals with extraction of data to cleaning it and training the QA model which eventually be

used in real-time scenario as chatbot with the help of Bayesian Inference.

Here are the outlines of the contribution of the thesis:

• Development of the first Romanian QA dataset. In general datasets are extremely

expensive to develop, and good quality ones require a lot of effort. Our dataset fill a

need in the market and the fact that is open source opens the door for future research

to be done. The dataset is studied in detail using multiple ML techniques as detailed

in Chapter 3.

• Development of the RoAlbert Model. Training models for specific languages are

time consuming and expensive and the fact that this model is open source enriches the

Romanian NLP landscape. We have explained the model RoAlbert in the proposed

in the implementation section detailed in Chapter 5.

• Integrating pepper with an real time open source QA model opens the door for future

commercial applications out of the box, that can be deployed with ease in real world

environment. We demonstrate this in Chapter 5.

• Bayesian modeling for QA is an relatively less studied domain, and the research pre-

sented in this document shows the potential of this type of approach in NLP. We are

studying a very particular situation, where the first answer is not correct, the feed-

back is received from the user and the model uses this newly received information

to do inference on the spot without using expensive hardware. This is explained in

Chapter 6.

• An extensive review of the STT approaches is made, that can be used as a starting

point for future real world applications, In this context a Robot (in our case Pepper)

can communicate with the user leveraging language. This a more natural form of

communication that offers multiple advantages and also challenges. The real time

application of it is shown in Section 5.2.3 of Chapter 5.
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Chapter 2: MOTIVATION

2.1 Problem Definition

Recent developments in artificial intelligence has made large impact in natural language

processing (NLP). Most major companies are especially interested in NLP applications for

question answering (QA) tasks. Although QA has been the subject of scientific interest

for over sixty years, recent NLP developments have led to important advancement in this

area [25, 89]. QA involves the process of a user submitting a natural language-formatted

question which is then concisely and correctly answered by the language model (LM).

When dealing with user queries, NLP tools like chatbots should be capable of detecting

intent. For example, when we pose the question “What is the weather in Bucharest to-

morrow?”, a chatbot should be able to understand Bucharest as a location, tomorrow as a

date and the user intent to know the weather. Unlike a standard search engine, QA systems

must be able to provide a clear answer to the posed question as opposed to a list of relevant

information that may or may not contain the question’s answer.

QA has become commonplace in many applications such as standard QA, dialog sys-

tems (i.e., chatbots), community QA systems, multimedia QA, and reading comprehension

QA (RC-QA) [25]. In standard QA tasks, the answer is obtained from a knowledge base

(KB) or free text. Dialog systems are designed to chat with an agent. Community QA

systems allow users to post a question that can be receive several answers from the other

users within the community. The community QA system is used to validate the suggested

answers, then select the most accurate and/or relevant one. Multimedia QA poses questions

in the form of an image or video, meaning that the system must be capable of multimedia

processing and rational. For RC-QA systems, the system is provided both a question and a

passage where the RC-QA must be able to find the answer within the provided passage.

Reading comprehension (RC) tests the level of text understanding using questions and

answers. Applying RC tests to natural language comprehension for computers is known

as machine comprehension. During machines comprehension testing, machines are pro-

vided with a passage, then tasked with answering a question or question set. Questions

can be provided in either multiple-choice or short-answer formats. The first RC-QA sys-

tem is QUALM, which was developed by Lehnert in 1977 [25]. RC-QA can be especially

challenging since it combines many difficult tasks like reading, comprehending, process-

ing, reasoning, and answering. Some of the primary challenges that are still being stud-

ied include synthesis, paraphrasing, and inference [25]. Synthesis involves the integration
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of information that is distributed over multiple sentences within a passage. Paraphrasing

recognition requires word knowledge and synonymy to recognize sentences in a provided

passage that include or paraphrase the provided question. Inference refers to the ability to

provide an answer even when the passage information is incomplete. As shown in Figure

2.1, RC-QA systems are generally comprised of an embedding layer, encoding layer, atten-

tion layer, and output layer [25]. The embedding layer contains the input (i.e., question and

passage) representation model, which is usually GloVe or Word2Vec. The neural network

model uses the encoding layer to separately encode the question and passage, most often

using a recurrent neural network (RNN) technique. The attention layer contains an atten-

tion mechanism that is used to capture relations between the passage and question. Finally,

the output layer is where the answer is generated or found.

The three primary QA system paradigms are–(1)free text QA, also known as the in-

formation retrieval approach [73, 200], (2) the KB-QA approach [96, 224, 233], and (3)

the hybrid paradigm [59]. Free text QA relies on question analysis to assess the type of

answer required, followed by the implementation of Information Retrieval (IR) to identify

the correct answer from a corpus. In KB-QA, questions are processed into predicates with

semantic representations. Once this is complete, the system searches through a knowledge

base (KB). Hybrid paradigm approaches use both free text and a KB to provide wider sys-

tem coverage to improve the probability of producing a correct answer. These systems are

evaluated using various metrics such as recall and precision that are generally dependent

on the track or application. Generally, QA systems categorize questions as either factoid

or non-factoid [25]. Factoid questions are highly specific and have a single answer. Non-

factoid questions, also referred to as complex questions, are open-ended with many correct

answers which requires the QA system to be capable of reasoning. DL methods have been

successfully developed for RC-QA models.

The two primary KB-QA types are Multi-Relation questions and Single-Relation ques-

tions [25]. Multi-Relation questions determine the system’s ability to answer constrained

questions. Six primary constraints have been recognized in the literature [30]. Three large

datasets are available for KB-QA use, all of which are based on Freebase KB, mean-

ing that each of questions are answerable by Freebase [25]. These are the SimpleQues-

tions dataset [100], which is directed towards single-relation questions, the WebQuestions

dataset [34] used for multi-relations questions, and the ComplexQuestions dataset [30]

used for multi-relations questions. Webquestions is designed to answer real questions. A

summary of different KB-QA directions is provided in Table 2.2.

KB-QA systems still face many challenges when it comes to answering complex ques-
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Figure 2.1: Sample DL RC-QA model architecture. [25]

Figure 2.2: Summary of recently reported KB-QA methods. [25]

tions, especially during real-time customer service interactions when users provide specific

information and require immediate answers. These scenarios often include three types of

questions–(1) questions involving specific conditions, (2) intention-based questions, and

(3) questions that require constraint interference. Although KBs are extremely large, they

are not completely comprehensive and will be missing many facts. Additionally, lexical

and vocabulary gaps often exist in KBs where the vocabulary of the user does not match

the vocabulary of the KB [25]. Knowledge completion techniques for QA systems have

been developed as a way of bridging any knowledge gaps. DL has been a powerful way

to overcome these issues. Word embedding, for instance, is a method to bridge incomplete

and vocabulary gaps [25]. Figure 2.3 summarizes the available benchmark datasets that

include complex questions and introduces the three relevant general domain KBs.

WebQuestions [34] is designed to answer real questions. The database questions are
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collected from the Google Suggest API. Answers are annotated using Amazon Mechanic

Turk. Although this is the most popular dataset, it has two major disadvantages [76]. The

first is that only answers are labeled for questions with no provided logical forms. The

second is that 84% of the database is formed of simple questions with only a few of

those requiring constraint inference and multi-hop reasoning. WebQuestionsSP [222] is

designed to solve the first issue by annotating SPARQL query statements in WebQues-

tions and removing questions with unclear intentions, ambiguous expressions, or unclear

answers [76]. ComplexQuestions [30] targets the second issue by introducing additional

questions containing type or entity constraints, implicit or explicit time constraints, and

aggregation constraints. Finally, ComplexWebQuestions [199] is used to modify the We-

bQuestionsSP SPARQL queries by adding constraints, then generating natural language

questions using Amazon Mechanic Turk and templates.

Question Answering over Linked Data (QALD) is an evaluation subtask for the Con-

ference and Labs of the Evaluation Forum (CLEF) [76]. Since its initiation in 2011, it has

been held annually and provides many training datasets in addition to testing these sets

each time. Complex questions account for approximately 38% of the questions including

those with multiple entities and relationships.

Large-Scale Complex Question Answering Dataset (LC-QuAD) [202] was published

in 2017 based on DBpedia. Approximately 82% of the dataset is composed of complex

questions which are constructed using predefined SPARQL templates. These templates are

initially filled with seed entities and associated relations. These are used to generate the

specific SPARQL queries on DBpedia. The queries are then converted to natural language

questions using a combination of crowdsourcing and predefined question templates. By

expanding on this framework, a more diverse and larger KBQA dataset was formed, named

LcQuAD 2.0 [69], containing more forms of complex questions based on DBpedia and

Wikidata.

Figure 2.3: Summary of KB-QA benchmark datasets that involve complex questions. [76]

Name-entity recognition (NER) plays an important role in extracting such information
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from sentences. Chatbots use intentions and entities to understand user-written text. For

humans this is a natural process, but for machines this is a complicated task that requires

large amounts of data and computing power to achieve marginal results. The primary prob-

lem lies in real-time text analysis, especially when there are a limited amount of training

examples. Despite the fact that deep learning-based techniques have achieved state-of-

the-art results for several NLP tasks, these methods still suffer from insufficiently labeled

training data.

DL architecture has been studied to improve NER and intent classification accuracy.

New performance records are created for various NLP tasks every few months. Higher

accuracy means answering customers correctly most of the time. BERT (Bidirectional

Encoder Representations from Transformers) is a large neural network model pre-trained

using over 3 billion English words sourced from Wikipedia. The extensive pre-training of

BERT also offers support of 104 different languages. The BERT model uses context from

both sides adjacent to each word (i.e., the left and right hand sides) to determine or predict

its meaning. For example, the meaning of a word like "bank" is different when using the

terms “river bank” and “bank account”. BERT has already shown the best results, beating

state-of-the-art in eleven NLP tasks. We are attempting to use the BERT model for intent

classification. Since BERT has been so extensively pre-trained, we are going to explore

the pre-trained Romania BERT model on an IT-focused dataset prepared in the Romanian

language.

To solve the previously mentioned problem, we need a model capable of interpreting

questions in real-time using less training data. Therefore, text interpretation is a must to get

a meaningful answer from the question. Specifically, the chatbot should be able to perform

an intent classification to get the meaning of a sentence whenever a user says something.

As with human dialogue, chatbots usually speak for multiple rounds. The purpose of the

task is to respond correctly to your request, as the dialog becomes the context. In this

case, generating the appropriate answer involves a large set of short text fragments and

classifying them according to the calculated importance for the query. Therefore, the task

is to fetch these text fragments and classify them to answer the question by taking the

context of the conversation into account.

The major aim in QA systems is to develop a technology that not only searches the

correct documents but also obtains accurate answers to natural language questions. To

answer questions in the natural language, more complex text processing is required than

what is currently employed in the information retrieval system. Some response systems

that can be handled have been developed. This is required to achieve improved accuracy.
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However, there are few reports of technologies that can quickly find the correct answer.

2.2 Question Answering Procedure

If we think of QA as a human activity, what do we expect when someone is asked a

question to which they do not know the answer? In this case, the respondent may consult

some other knowledge source (e.g. books, libraries, internet, etc.) to find information they

can read and understand to determine the answer. Then they can return to the person who

originally asked the question and tell them the answer. They can also indicate where to

find the answer so that the questioner can trust the relayed information. What they will not

do is just return a book or a several documents (which may hold the answer) as a question

response. Presumably, this is what most computer users must do now in NLP.

Many people hope to use the internet as a source of knowledge from which they can find

answers to their questions. Although many search engines, for some cases, suggest that you

can ask questions, the returned results are usually part of several documents, which may or

may not contain answers, that have a lot in common with the question. This is because the

complex text processing and understanding requirements placed on QA models exceed the

capabilities of widely available search engines.

Three primary approaches are used in KB-QA–semantic parsing (SP) or neural seman-

tic parsing (NSP), information retrieval (IR), and deep learning (DL) [25, 96]. SP-based

methods rely on semantic parsers to reconstruct questions into structured expressions (e.g.,

logical forms) [221]. SP is also used to create structured queries from natural language

questions (SPARQL). SPs form executable query languages from natural language ques-

tions [76]. NSPs, meanwhile, use neural networks to construct SPs in order to improve the

parsing scalability and capability. Unstructured questions are mapped to structured logical

forms. These can then be transformed to executable queries using manually-crafted rules.

NSP-based models generally slightly outperform most IR-based methods [76]. IR-based

methods, also known as relation extraction-based methods, uses the input question to iden-

tify answers from a KB. These method rely on binary classification or candidate sorting for

QA [76]. First, candidate answer and question distributed representations are generated.

The matching score between these encoded questions and answers are then calculated to

choose the final answer. Some IR methods use a multi-hop reasoning framework to deal

with complex questions. This type of methodology remove manually defined templates

and rules, however they are unable to interpret the model. Additionally, they are unable to

process complex questions that require constraint inference. Finally, DL-based methods,

9



also known as embedding-based methods, represent questions and answers using semantic

vectors [96]. The most similar answer is then identified by applying a similarity matrix.

Recent methods rely on three primary stages–topic entity, fact finding, and answer se-

lection [25]. During topic entity, the topic of the question is identified. This can be com-

pleted using an API [96, 221]. Fact finding, also referred to as relation extraction, searches

for relationships between the defined topic entity to provide candidate knowledge triples.

This can be completed using knowledge completion [221]. Finally, answer selection is

used to match the identified question and candidate triples to form semantic vectors. The

semantic relevance score is then calculated between these two fields using a predefined

similarity measure to choose the most similar answer [96].

Traditional KBQA methods generally use predefined templates or rules to parse ques-

tions in order to obtain logical forms. This includes the standard bottom-up parser [34].

In this method, KB entities or relations are coarse mapped from question phrases using

a large text corpus and KB [76]. When provided a question, the parser recursively cal-

culates using lexicon KB relationship and entity mapping to question phrases along with

four hand-crafted operations (i.e., Interaction, Join, Aggregate, and Bridging). The parser

uses a log-linear model opposed to the manually-defined features to separate from poor

calculations while minimizing the search space.

A template-based model, Aqqu, has been developed for question mapping to three tem-

plates (Fig. 2.4 [76]. First, any entities from the KB matching a portion of the question are

identified. Matches can be either literal or an alias of the entity. Aqqu then uses the three

templates where the KB subgraph is centered on the matches. The ranking model based on

manually defined features is then used to select and output the best matches to query the

KB and obtain a question answer.

Figure 2.4: Question mapping templates in Aqqu including example candidates and corre-
sponding questions. [31, 76]

Temporal language is comprised of time, event, and temporal relation that can be de-

fined by three primary categories–temporal relation (TLINK), subordinate (SLINK), and
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aspectual (ALINK) [25]. TLINK is representative of the temporal relationship between an

event and a time, two events, or two times. SLINK is used to represent evidential and fac-

tual modality. ALINK only describes the relationship between two events, or aspectual con-

nections. The relational extraction portion of temporal representation is the most difficult.

Temporal QA is used to answer temporal-based questions, which involves the combination

of temporal information extraction and reasoning. Temporal questions can be categorized

as temporal answer, explicit temporal, implicit temporal, and ordinal constraints. Temporal

answers involve questions that inquire about time or date. Explicit temporals involve ques-

tions that include explicit date, time, or event information. Implicit temporals are where

the question does not have an explicit temporal term, but instead contains the terms before,

during, or after. Ordinal constraints require a rank to answer a question.

2.3 Challenges of the Question Answering system

What makes question-answering so difficult in NLP? The major question remaining

is “what has to be programmed in a computer to make it capable of answering questions

as humans do”? Even if it is assumed that all QA system input is provided in a question

format, wider dialogue remains a problem, because there are usually many ways to ask

the same question. Sometimes the user’s turn is simply a statement of the problem, and

sometimes this statement depends on the environment in which the question is raised or

the knowledge of the questioner. Similarly, there are multiple ways to describe the same

answer, so the background and user knowledge plays a role in defining the answer. For

example, the response “last Wednesday” is meaningless without knowing the current date

or the date the response source was recorded. This is not only difficult for the QA system

to determine whether the two answers are equal (combining and ranking responses) but

is also challenging to evaluate the QA system results. The versatility of natural language

extends to both question and answer expressions, making it difficult to ensure the training

example containing the answers to the given questions is retrieved.

When asking definition questions (e.g. “What is machine learning?”) with little change,

QA system answers are usually more diverse than those of a factual question (e.g. a per-

son’s name or date). Finding answers to definition questions is very difficult since the only

available phrase to narrow the search is the term being defined. These words are often used

in documents without initially defining them. This means that many training samples re-

ferring to the defined terms will be useless to the QA system, because it is trying to create

a definition. Obviously, the development of computer systems capable of answering ques-
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tions poses many challenges. In this thesis, we discuss the application of a BERT model

trained using a large question-answer pair in the Romanian language. Each question is

independent and will be answered completed separately from the previous one. Of course,

this removes some of the issues discussed above, especially that of context, allowing us

to freely focus on other issues. Furthermore we propose and implement end-to-end QA

system and we deploy it on the robot Pepper. Lastly, we investigate leveraging Bayesian

methodologies is the QA setup, with minimal computational overhead, focusing on the

situation when the first answer given by the system is not correct. We experiment with

different ways of using the new information given (that the initial answer is not correct).
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Chapter 3: DATASET

In this chapter, we will cover the basic concepts of question answering datasets, types

of datasets in QA model, reading comprehension QA, and newly introduced Romanian

datasets with its variant.

3.1 Introduction

The initial method of answering questions in natural language involves analyzing the

query grammatically and then extracting the response using a set of pre-defined rules.

This strategy was based on the successful application of rule-based transformation of ques-

tions in ELIZA [216]. ELIZA was designed to turn questions back on the person asking

them—for example, “Who are you?” the program might respond, “Why are you interested

in whether I am or not?” This necessitates a grammatical analysis of the query, which

following programs like Baseball [88], one of the first question-answering systems, built

upon.

Rule-based systems were popular until the late 1990s, and some are still being devel-

oped today. Designing a rule-based system, on the other hand, necessitates enumerating

every potential question variant or defining a formal grammar to which all questions must

adhere. In the same way, information extracted from natural language text must be in a

specified format. These systems are incapable of dealing with the complexity of natural

language and cannot be said to understand text. Nonetheless, to enhance the input features,

analytical approaches designed for rule-based systems, such as part-of-speech taggers or

named entity recognizers, are still in use [45]. Rule-based systems frequently impose strict

limitations on the format of the question, but question answering research in general aims

to eliminate as many of these artificial constraints as possible, allowing users to ask in-

quiries in totally natural language. While most datasets contain such challenges, some use

cloze-style questions, a type of question that is halfway between artificial and freeform: A

cloze-style question is one in which one or more important words have been blanked out.

The word or phrase that correctly fills in the space is the "answer." Cloze tests have long

been used in education to assess understanding in foreign language learning. Because the

sentences that form the basis for the cloze are freeform, it acts as a bridge between a fixed

format question and a freeform question. However, a cloze-style sentence provides more

contextual clues to the answer than a question, as well as being more similar to information

the system might find in context documents.

Language modeling has led to the critical development of advanced NLP tasks such
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as machine reading comprehension (MRC). MRC requires the computational comprehen-

sion of natural language text to answer provided questions. This task is especially cru-

cial for advanced search engines and intelligent agent frameworks at the cost of expensive

datasets that are difficult to gather and often limited to a single language, most often En-

glish. Examples of the types of datasets used for English Question Answering models in-

clude SQuAD1.1. [167], SQuAD2.0 [166], and CoQA [169]. Although less common, other

datasets have been developed in alternative languages such as Chinese (i.e., span-extraction

MRC [54] and user-query-log-based DuReader [98]), Korean (MRC dataset [129]), and

French (Question Answer dataset [67]) [149].

3.2 Various QA datasets

Here we will explore various available QA, information retrieval and MRC datasets.

We will analyse the difference in datasets with respect to broadness of question domains.

The grammatical variety of the questions, the extent to which the required information is

distributed (whether the answer requires reasoning over multiple pieces of evidence), and

whether answers are expected as free text, as a substring of the context, multiple-choice, or

cloze-style fill-in-the-blank are also distinguishing features.

3.2.1 Stanford Question Answering Dataset (SQuAD)

One of the most widely studied question answering datasets is the Stanford Question

Answering Dataset (SQuAD) [167]. On the exact match metric, the best submissions out-

performed humans. As a result, it may be argued that the problem has been "solved," and

that additional investigation of this dataset is unlikely to provide more intriguing results.

However, because there are so many high-performing question answering systems on this

job, it remains of impactful interest to this field.

In order to create the dataset, the authors selected 536 articles from the English Wikipedia

from the top 10 000 articles by PageRank [153]. After removing tables, pictures, and para-

graphs with less than 500 characters, there are 23 215 paragraphs left. Human annotators

asked up to five questions for each paragraph using Amazon Mechanical Turk crowdsourc-

ing, totaling 107 785 questions. SQuAD consists of contexts, questions, and answers as

shown in Fig 3.1. In addition to the question, a paragraph of context is provided, and the

solution is a substring from the text. The authors went one step further and collected up to

four alternative answers for each question, all of which were correct. The paragraphs may

have similar topics (since they could be from the same article), yet they cover a wide range

14



Context: Super Bowl 50 was an American football game to determine the
champion of the National Football League (NFL) for the 2015 season. The
American Football Conference (AFC) champion Denver Broncos defeated
the National Football Conference (NFC) champion Carolina Panthers
24–10 to earn their third Super Bowl title. The game was played on
February 7, 2016, at Levi’s Stadium in the San Francisco Bay Area at Santa
Clara, California. As this was the 50th Super Bowl, the league emphasized
the "golden anniversary" with various gold-themed initiatives, as well as
temporarily suspending the tradition of naming each Super Bowl game
with Roman numerals (under which the game would have been known as
"Super Bowl L"), so that the logo could prominently feature the Arabic
numerals 50.
Question: Which NFL team represented the AFC at Super Bowl 50?
Answer: Denver Broncos

Figure 3.1: A sample from SQuAD.

of topics in total. SQuAD is not, however, an open-domain question-answering dataset.

The purpose of open-domain question answering, according to the authors, is "to answer a

question from a huge collection of documents," yet this dataset requires answer extraction,

i.e. identifying the proper answer span in a single document.

Version 2.0 of the dataset was released in June 2018 [166], which adds a new class of

question-context pair to the previous dataset: a problem instance in which the question can-

not be answered using the paragraph provided, frequently due to a small semantic change.

3.2.2 QUASAR

QUestion Answering by Search and Reading (QUASAR) [66] presents two datasets

with two tasks: QUASAR-S and QUASAR-T. QUASAR-S (S for Stackoverflow) is a 37

000-statement cloze-style closed-domain question-answering task. The tasks were gener-

ated automatically using stackoverflow.com’s programming help section. Each statement

is the site’s definition of a programming-related question tag (for example, java or.net). A

placeholder is used in place of the tag. There are two versions of the dataset, each with

a different type of context: One version contains 50 long parts (the full answer plus the

full text of the question) and the other contains 200 short parts (one sentence) from the 50

most popular question threads related to the tag. Figure 3.2 shows a problem instance from
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Question: javascript—javascript not to be confused with java is a dynamic
weaklytyped language used for XXXXX as well as server-side scripting.
Answer: client-side
Context excerpt:
JavaScript is not weakly typed, it is strong typed.
JavaScript is a Client Side Scripting Language.
JavaScript was the **original** client-side web scripting language.

Figure 3.2: Sample problem instance from QUASAR-S.

Question: 7-Eleven stores were temporarily converted into Kwik E-marts
to promote the release of what movie?
Answer: the simpsons movie
Context excerpt:
In July 2007, 7-Eleven redesigned some stores to look like Kwik-E-Marts
in select cities to promote The Simpsons Movie.
Tie-in promotions were made with several companies including 7-Eleven,
which transformed selected store into Kwik-E-Marts.
“7-Eleven Becomes Kwik-E-Mart for “Simpsons Movie” Promotion”.

Figure 3.3: Sample problem instance from QUASAR-T.

QUASAR-S.

QUASAR-T (T for trivia) is a database of about 54 000 human-written trivia questions

covering a wide range of subjects. ClueWeb09, a collection of about one billion web pages,

is used as a knowledge basis for answering these questions. The questions, on the other

hand, were written and gathered independently from the corpus and came from various

online sources. 50 lengthy (2048 characters) or 200 short (200 characters) context faux

papers are chosen from the ClueWeb09 websites. It is not guaranteed that the answer string

will be found in any context document due to the nature of context retrieval. Figure 3.3

shows a problem instance from QUASAR-T.

Although both QUASAR datasets provide more context than SQuAD, the papers are

likely to be highly redundant, with the correct answer appearing in many context docu-

ments.
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Question: The Dodecanese Campaign of WWII that was an attempt by the
Allied forces to capture islands in the Aegean Sea was the inspiration for
which acclaimed 1961 commando film?
Answer: The Guns of Navarone
Context excerpt:
Context excerpt: The Dodecanese Campaign of World War II was an at-
tempt by Allied forces to capture the Italian-held Dodecanese islands in
the Aegean Sea following the surrender of Italy in September 1943, and use
them as bases against the German-controlled Balkans. The failed campaign,
and in particular the Battle of Leros, inspired the 1957 novel The Guns of
Navarone and the successful 1961 movie of the same name.

Figure 3.4: Sample problem instance from TriviaQA.

3.2.3 TriviaQA

TriviaQA by Joshi et al. [112] is similar to QUASAR-T in that it is made up of human-

written trivia questions acquired from the internet on a variety of themes. There are 650

000 question-answer-context triplets in all, with 95 000 question-answer pairs annotated

with on average six separate context documents. Despite the fact that the questions were

produced in isolation from any context, the dataset includes two sets of context materials

for each question. The first group is based on a crawl of the subject’s top Bing web search

results, eliminating keywords like trivia, question, and answer. The second collection in-

cludes Wikipedia articles for any entities that were recognized automatically in the inquiry.

Figure 3.4 shows a problem instance from TriviaQA.

The second collection includes Wikipedia articles for any entities that were recognized

automatically in the inquiry. As a result, TriviaQA provides a lot of information about each

question. The authors also give an unfiltered version with 110 495 question-answer pairings

and 740 000 context documents (context documents that do not contain the response string

have not been filtered away). In comparison to SQuAD, even the filtered version offers a

far bigger background for each question. TriviaQA’s average context length is 2 895 words,

making many techniques that would work on SQuAD unable to apply to this dataset.

3.2.4 MS-MARCO

The Microsoft MARCO (MAchine Reading COmprehension) dataset contains 182 000

online queries and replies (in the most recent version at the time of writing). The ques-

17



Query: will I qualify for osap if I’m new in canada
Context (excerpts):
you must be a: 1. Canadian citizen; 2. Permanent resident or 3. Protected
person/convention refugee
You will not be eligible for a Canada-Ontario Integrated Student Loan
Answer: No. You will nott qualify.

Figure 3.5: Sample problem instance from MS-MARCO.

tions are real queries submitted to the Bing search engine by users, which Microsoft has

collected and anonymized. Crowdworkers were urged to write full-text answers, so they

wrote them. They were given the top search results from the given query as context. These

identical extracts are also included as context documents in the dataset. Each question is

also annotated with the URLs of the web pages from which the context snippets were de-

rived, as well as a categorization tag, such as ENTITY or NUMERIC, indicating the type

of response expected. This tag is meant for model analysis rather than training. Figure 3.5

shows a problem instance from MS-MACRO.

3.2.5 RACE

The RACE dataset [121] contains 28 000 english passages and 100 000 questions cre-

ated by English instructors for Chinese middle and high school English classrooms. There

is a huge difference in difficulty across the questions because the examination questions are

aimed at students aged 12 to 18. As a result, the authors advise splitting the dataset into

RACE-M, which includes questions for middle schoolers (12-15 years old), and RACE-

H, which includes high school questions (15-18 years). Each question has four multiple-

choice options. As a result, the authors advise splitting the dataset into RACE-M, which

includes questions for middle schoolers (12-15 years old), and RACE-H, which includes

high school questions (15-18 years). Each question has four multiple-choice options. Fig-

ure 3.6 shows a problem instance from RACE.

3.2.6 MS MACRO

MS MACRO contains 1,010,916 questions, 8,841,823 companion passages taken from

3,563,535 web documents, and 182,669 editorially prepared responses. This is a large-

18



Context (excerpts):
Many people optimistically thought industry awards for better equipment
would stimulate the production of quieter appliances. It was even suggested
that noise from building sites could be alleviated
Question: What was the author’s attitude towards the industry awards for
quieter? (sic)
Answer: A: suspicious, B: positive, C: enthusiastic, D: indifferent

Figure 3.6: Sample problem instance from RACE.

scale dataset from the real world. It consists of Bing or Cortana search queries that have

been anonymised. They present a series of extracted paragraphs from documents collected

by Bing in response to the question for each question. The passages and documents may

or may not include all of the information required to solve the question. Crowd-sourced

editors must generate answers for each question based on the information found in the

recovered texts.

3.2.7 Narrative QA

This dataset contains questions based on summaries of movie screenplays and books

that were prepared by editors. There are approximately 45,000 question-answer pairs dis-

tributed throughout 1,567 stories in the dataset, which is evenly split between books and

movie scripts. This dataset includes tasks based on both summaries and full novels/scripts.

NarrativeQA’s full version requires you to read and comprehend entire stories (i.e., books

and movie scripts). This task is currently intractable for existing neural models out of the

box, according to the authors. One of the datasets for which we develop models in this

thesis is this one.

3.2.8 MCScript Dataset

According to this dataset given as part of the SemEval Task 2018, the introduction of

commonsense information benefits natural language understanding systems. Authors con-

centrate on scripts, which are commonsense information about everyday actions. Scripts

are events that describe stereotypical human behaviors (also known as situations), such as

baking a cake or boarding the bus. Many times, context is missing or insufficient infor-
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Text: My backyard was looking a little empty, so I decided I would plant
something. I went out and bought tree seeds. I found a spot in my yard that
looked like it would get enough sunshine. There, I dug a hole for the seeds.
Once that was done, I took my watering can and watered the seeds.
QUESTION/ANSWER:: Why was the tree planted in that spot?
1. to get enough sunshine.
2. there was no other space.
While the above question should be easily answerable from text, the
following question answer pair requires common sense knowledge, which
can be incorporated into the model in various ways and is explored in
further depth as part of this thesis in later sections.
QUESTION/ANSWER:: What was used to dig the hole?
1. a shovel.
2. their bare hands.
This is one of the few large scale datasets that help tackle the challenge of
augmenting model’s reasoning capabilities with common sense knowledge
and hence is a novel task.

Figure 3.7: Sample problem instance from MS-MACRO.

mation is available to resolve the ambiguity. In such instances, the authors believe that

including commonsense knowledge about the world in an NLU system might be benefi-

cial. There are 2,119 texts and 13,939 questions in total. The texts in the data set comprise

110 script scenarios of varying complexity and talk about everyday activities. Figure 3.7

shows the example of the dataset.

3.3 Datasets Comparison

For model development, ideal datasets should include the following characteristics:

• 1. Large enough for large deep learning models to be trained.

• 2. Contain questions about the underlying narrative rather than the text’s surface

form, which should necessitate the construction of more abstract representations

about the actions and relationships portrayed throughout the document. Answer-

ing such questions necessitates readers combining information from numerous state-

ments throughout the document and generating a coherent response based on this

combined information. That is, they assess the reader’s ability to grasp language
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rather than just pattern matching.

• 3. Question-and-answer pairs should be more representational of a normal distribu-

tion of knowledge needs that users might desire to meet with the help of, say, an

intelligent assistant.

SQUAD, MS MARCO, and Narrative QA are three datasets that need replies to be more

than single words/entities and present a more difficult task than a simple answer ranking

problem. SQUAD presents a huge number of questions from these three databases. How-

ever, these come from a tiny number of documents, each of which is only a few pages

long, limiting the lexical and subject diversity that models trained on this data can handle.

On both SQUAD and MS MARCO, simple models scoring and/or extracting candidate

spans conditioned on the query and superficial signal from the rest of the document per-

form well. These models will not easily generalize to issues where the solutions are not

document spans or where a correct answer requires numerous discontinuous spans. The

span prediction models in NarrativeQA’s baselines for summary-based questions are also

the best-performing. However, there is still a compelling disparity between the answers

provided by humans and the projected spans.

Furthermore, in Narrative QA, fictional stories have a number of advantages as a do-

main because they are largely self-contained, summaries have more intricate linkages and

timelines than news pieces or brief paragraphs from the web, and so provide a task that is

different in nature. Real-world text, on the other hand, is messy: it may contain mistakes,

abbreviations, and transcription problems in the case of spoken interfaces. SQUAD and

NarrativeQA both have high-quality stories or text spans from Wikipedia and other sources.

Machine reading comprehension systems in the real world should be tested on genuine

datasets in which they must be robust to noisy and problematic inputs. MS MARCO solves

this problem because the questions are based on actual search queries given to Bing by

users. Furthermore, none of these datasets specifically evaluate a model’s commonsense

reasoning abilities, which is critical when the necessary context for a query isn’t imme-

diately provided in text and inferences from external knowledge bases are required. The

MCScript Dataset overcomes this constraint.

As can be observed, each dataset has its own set of restrictions, and there is still need to

produce more datasets to enable the modeling of real-world question-answering systems.
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3.4 Open-Domain Question Answering

In open-domain question answering, the context is either not provided with the ques-

tion or is provided but is either too broad or too much for the question answering system

to employ directly. Such systems must employ an information retrieval (IR) component to

condense the available context into a manageable amount that can be fed into the question

answering system (which is usually built on neural networks). We must compare our per-

formance to the models from this section because this task is the focal point of this project.

However, exact numbers are often impossible to compare since various datasets are used or

varying amounts of context are gathered.

3.4.1 DrQA

DrQA [45], which stands for Document Reader Question Answering, is a typical sys-

tem for this problem: TF-IDF [181] is used to extract the top five articles from a corpus

of Wikipedia articles. Those articles are divided into paragraphs and fed into the question

answering system, which aggregates response candidates before selecting the most likely

answer from all paragraphs from all articles.

3.4.2 Wikipedia QA

Ryu, Jang, and Kim [178] provide another methodology for answering questions uti-

lizing Wikipedia as a knowledge source. It’s a rule-based system without any machine

learning algorithms. Instead, it uses pre-defined regular expressions to extract structured

information from Wikipedia articles, utilizing the structure that is explicitly incorporated

in Wikipedia. While they can answer over 85% of questions, the results are practically

impossible to compare to other models because their model is hand-tailored to the Korean-

language Wikipedia, and their test set consists of only 600 (unpublished) questions that

they gathered themselves based on criteria that they do not report.
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3.5 Romanian Dataset

3.5.1 Romanian QA Task

A Romanian IT Dataset (RoITD) comparable to SQuAD 1.1 has recently been intro-

duced in the literature [149]. RoITD is a fully Romanian natural language dataset contain-

ing 9575 QA pairs designed by crowd workers [149]. The QA pairs were developed using

5043 IT- and household product-focused Romanian Wikipedia articles [149]. 5103 of the

questions are ’possible’, meaning the correct answer is within the provided paragraph while

4472 questions are ’not possible’, meaning that the provided answer is only plausible and

cannot be considered correct. Figure 3.8 shows a RoITD sample for reference. The dataset

was evaluated by fine-tuning the QA model using the following transformer-based pre-

trained models–(1) Multilingual BERT [65], (2) DistilBERT [183], (3) Romanian BERT

(RoBERT) [138], and (4) XLM-R [53]. While transformer-based DL models can surpass

human accuracy for MRC tasks, their performance in alternative languages has yet to be

thoroughly tested.

Figure 3.8: Example of a QA pair in RoITD. [149]

Crowd workers created four maximum questions for a given paragraph where a mini-

mum of one of these questions was unanswerable using an Amazon Web Service t2.micro

machine with Ubuntu 20.04.1 operating system [149]. Inquiries avoided quoting the text

and instead required original structure while still maintaining proper grammar [149]. The

formulated queries were categorized using "U" (i.e., the question is not answerable with

a likely answer) or "A" (i.e., the question is answerable with a correct answer). The user

interface for question development is shown in Figure 4.4, and Figure 3.10 shows the con-
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firmation following question registration.

Figure 3.9: Question development user interface illustrating the annotation process. [149]

Figure 3.10: Following question formulation.

RoITD follows a data structure format similar to SQuAD which includes "context",

"id", "question", "text", "answer_start", and "is_impossible" attributes [149]. Paragraphs

shown to crowd workers are stored within the "context" field. The "id" attribute consists

of randomly assigned identification numbers unique to each question-answer pair. The

"question" field contains the approved questions formulated by the crowd workers. The

"answer_start" attribute tracks the character index that marks the answer beginning. The

"is_impossible" attribute is defined using "0" or "1" where "0" indicates that the question is

answerable with a correct answer (category "A") and "1" indicates that the question is non

answerable with a likely answer (category "U").
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Table 3.1: Categorization of 50 randomly chosen Question Answer pairs based on reason-
ing. [149]

Reasoning Description Example Percentage
Lexical
variation

Major correlation between
the question and the an-
swer sentence are syn-
onyms

Q:Ce se poate detecta cu ajutorul
camerelor duale AI? Sentence: Cu
camerele duale AI din spate de 13
MP + 2 MP, se pot recunoaste cu
usurinta obiecte ...

54%

Lexical
varia-
tion(world
knowl-
edge)

Major correlation between
the question and answer
sentence requires world
knowledge to resolve.

Q:Cu ce este asemantor Evelatus?
Sentence: ...un telefon similar cu
Evelatus Easy ...

12%

Multiple
sentence
reasoning

There is anaphora, or
higher-level fusion of mul-
tiple sentences is required

Q:Ce ajuta sa faci selfie-uri pe timp
de noapte? Sentence: ... Nokia 230
are o camera frontala de 2 MP cu
blitz cu LED si o carcasa din alu-
miniu subtire si eleganta.... Blitz-ul
cu LED de pe partea frontala a tele-
fonului te ajuta sa faci selfie-uri pe
timp de noapte . ...

25%

Ambiguous we do not agree with the
crowd-worker’s answer, or
the question does not have
a unique answer

Q:De ce V4 are ergonomie marita?
Sentence: ... datorita formei spe-
ciale si a finetii date de colturile ro-
tunjite, V4 Viper iti ofera o experi-
enta placuta la atingere ...

9%

To test RoITD, fifty random questions were chosen from RoITD and categorized [149].

The details of these categories are provided in Table 3.1. The categorization process pro-

vides a deeper understanding of the required reasoning for question answering, similar to

SQuAD [167]. These categorization results show that there are always lexical or syntactic

differences between the questions and corresponding answers [149].

A summary of the RoITD size is provided in Table 3.2 with additional size and length

statistics for question length, answer length, and passage length being shown in Tables 3.3,

3.4, and 3.5, respectively. These summaries shows that majority of questions contain 6-10

words. The majority of the answers contain either 1-5 or 6-10 words. The majority of

passages contained 51-80 words. The questions were then divided in eight question type

categories–(1) who (i.e., care), (2) what (i.e., ce), (3) when (i.e., cand), (4) where (i.e.,

unde), (5) why (i.e., de), (6) how (i.e., cum), (7) how many (i.e., cati), and (8) other (i.e.,
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Table 3.2: Types of unanswerable RoITD questions [149]

Train Test All
Number of articles 4170 813 5043
Number of questions 7175 2400 9575
Average passage
length

52.72 61.97 55.04

Average question
length

8.08 8.12 8.11

Average answer length 13.44 7.85 9.25
Vocabulary size 38265 18396 48821

altii). To maintain question diversity, crowd workers were required to manually select the

question type. The question distribution is summarized in Figure 3.11.

Table 3.3: RoITD question length statistics. [149]

Length Train Test
1-5 16.86 18.33
6-10 64.04 62.54
11-15 17.42 16.25
16-20 1.57 2.25
> 20 0.09 0.12

Table 3.4: RoITD answer length statistics. [149]

Length Train Test
1-5 48.62 19.45
6-10 23.13 23.95
11-15 14.16 21.62
16-20 7.67 16.29
> 20 6.39 18.66

Table 3.5: RoITD passage length statistics. [149]

Length Train Test
1-30 10.71 3.58
31-50 37.12 25.04
51-80 46.23 62.33
81-100 5.70 6.75
> 100 0.22 2.29

A single NVIDIA Tesla P100 GPU using Google Colaboratory trained the four MRC

models using the RoITD [149]. A constant configuration was used for the BERT-based
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pretrained MRC models, and the sample initialization parameters were used for the four

MRC models where the batch size per gpu is 12, maximum sequence length is 384, docu-

ment stride is 128, and thread number is 4 [149]. Under these conditions, a learning rate

of 3x10−5 and training duration of 10 epochs was measured [149]. Standard frameworks

including Exact Match (EM) and the F1-score were used to evaluate performance with the

results of each BERT-based model being summarized in Table 5.2. As shown in the perfor-

mance results, RoBERT outperforms both Multilingual BERT and DistilBERT with an EM

and F1-score of 35.06% and 53.62%, respectively. This is primarily attributed to the fact

that RoBERT is trained exclusively in Romanian using a vocabulary dataset that includes

semantics [149]. DistilBERT shows the poorest performance since it is a smaller model

than RoBERT and Multilingual BERT. Although Multilingual BERT shows fairly strong

performance with an EM and F1-score of 35.48% and 50.94%, respectively, it cannot com-

pete with the advantage that a dedicated Romanian training dataset provides RoBERT. To

improve the performance of DL and transformer models, the RoITD quality and size must

be improved.

Figure 3.11: Question type distribution.
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3.5.2 Romanian Question Classification Task

Even though this dataset is design as machine reading comprehension task, we extend it

further to another question classification task. This is inspired by the existing Text REtrieval

Conference (TREC) datasets [127]. The TREC Question Classification dataset includes a

training set of 5500 labeled questions and a test set of 500. The collection contains 6 level-2

labels and 47 level-1 labels. Each sentence is on average 10 words long, with a vocabulary

of 8700 words. Data is gathered from four sources: 4,500 English questions published by

USC [104], around 500 hand produced questions for a few unusual classes, 894 TREC 8

and TREC 9 questions, and 500 questions from TREC 10 (which acts as the test set).

Here we extend the RoITD dataset beyond question answering task to formulate a do-

main classification based on the type of question. Such task is known in question classifi-

cation. It helps in narrowing down the search area to a particular type of question which

helps to extract much better response in QA task. However, this dataset in not generated

from human annotators rather automatically using the type of question based on the word.

RoITD was developed using human annotators to answer the question and using human

annotator again is very costly and time consuming. Hence, we use separating the question

based on the words that question contains. In English dataset, the type of question usu-

ally depends on the words such as “What”, “Which”, “How”, “Why”, “Who”, “Where”,

“When”, and “Whose”. Similarly, we will extract domains of questions in RoITD based

on the Romanian version of these words such as “Ce”, “Cum”, “De ce”, “Care”, “Unde”,

“Când”, and “Caror”.

Here, we detail the statistics for the question classification. Here, table 3.6 shows the

number of questions that covers a particular question type. We can see that among selected

type of questions, the dataset does not have “De ce” and only 6 of the questions that contains

“Caror”. Hence we neglect these two questions type for their insignificant number. As

mentioned in the original datasets, there are altogether 9436 number of questions altogether,

only 8704 questions contains these popular question types. Hence our base size of dataset

is considered to be 8704. The final selected detail of the question classification dataset is

shown in Fig. 3.17. As we see that, the most popular question “Ce” (“What” in English)

has the highest samples as expected with 4704 questions. “Care” has the second highest

samples with 2724 questions followed by “Cum” with 986 questions. At last. “Unde” and

“Când” are the bottom two question types with 128 and 162 respectively.
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Table 3.6: Statistics of dataset for different types of questions.

Question Type Number of questions
Ce 4704

Cum 986
Care 2724
De ce 0
Unde 128
Când 162
Caror 6

Figure 3.12: Statistics of Question Classification Dataset based on type of questions.

Now as the questions types have been separated, we split the dataset into training and

testing various models. We do not specifically separate the training and testing sample

instead just use 80:20 random split and run the model using 10-fold cross validation. To

establish a simple baseline, we use several models to validate the performance of question

classification task. Since, this is an unbalanced dataset, we focus more on macro-F1 score

along with the accuracy of the model.
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3.5.3 Visual Analysis of the Dataset

Public and business databases now include gigabytes or terabytes of data on a regu-

lar basis due to the exponential growth in data volume. It has long been established that

the visual representation of such data is highly valuable for analyzing it, finding correla-

tions, as well as trends and outliers. To do this, it is necessary to somehow transform the

high-dimensional data into low-dimensional geometry for visualization. In this section,

we demonstrate some visual analysis of the RoITD dataset based on PCA and TSNE. We

evaluate both 2D and 3D for bag-of-words (BOW) and tf-idf. One method for collecting

high-dimensional data and exploiting the dependencies between the variables to portray it

in a more manageable, lower-dimensional form without sacrificing too much information

is principal components analysis (PCA). It is one of the simplest and most reliable tech-

niques to accomplish this dimensionality reduction. It is also one of the oldest and has

been repeatedly rediscovered in a variety of sectors, earning it the name Karhunen-Loève

transformation [15]. Finding the primary causes of data variations is the goal of the PCA

transformation approach. A more condensed explanation of the correlations in the data and

a deeper comprehension of the underlying features result from the identification of these

components. Consequently, it is a potent strategy to draw out broad trends from a data set.

Additionally, PCA delivers principal components ranked by their relevance, which makes

it a great starting point for data dimension reduction when dealing with multidimensional

data. This can be accomplished by ignoring the data set’s less important trends in favor of

focusing on its key principal components. In many application domains, combining PCA

and visual approaches is a typical strategy for high-dimensional dataset analysis [218].

Another data visualization technique is t-Distributed Stochastic Neighbor Embedding

(TSNE). It is a method for exploring and visualizing high-dimensional data. To put it

another way, TSNE helps you get a sense of how the data is organized in a high-dimensional

space. Through a nonlinear dimension reduction technique, it generates a single map that

displays the inherent structures in a high-dimensional dataset, including trends, patterns,

and outliers. In order to maintain the orientation of the data, PCA obtains the covariance

matrix and calculates the eigenvalues and eigenvectors. TSNE, on the other hand, operates

in a different manner. Consider a cloud of points in high dimension that we wish to shift to a

lower dimension that is also simpler while attempting to preserve the structure of the points,

particularly the relationship between the neighbors. It will center a t-Student distribution to

each value of the input and use that density to calculate the probability of each point. As a
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result, conditional probabilities will be created using the Euclidean distance between data

points. To maintain the data’s structure in the low dimensional map, TSNE will employ a

gradient descent method to minimize a cost function. It will produce a decent display of the

data by adjusting a few tweakable parameters and improving the objective function. This

exhibits a significant reduction in dimensions without sacrificing information.

Figure 3.13 shows the PCA visualization of RoITD dataset based on the type of ques-

tions in both 2D and 3D space. Here the input representation of the dataset is in the form

of BOW which maps the dataset into various types of questions. Even though we have

classified the type of questions based on the type of WH questions, we have not used these

WH tags as the features. There is one peculiar behavior in the visualization that is certain

samples are at specific gap in the graph. This might not be because of the features type

as there are almost all types of WH question present in each cluster. However, the behav-

ior is due to the context these WH questions are used. The contexual difference leads to

the shift in distribution of representation. Thus we can observe that the question type are

equally distributed across the high dimensional plane making the models to be very precise

to differentiate among the classes. This behaviour is also seen in the 3D plot of PCA. Here

we can see similar behavior in 3D space as well where the cluster does not seem very dis-

tinctive. In addition to this, we also visualize the dataset on PCA using tf-idf as shown in

Figs 3.14. PCA using tf-idf separates data into two heavy clusters. In this case we can see

that one of the question type that is “Ce” is very distinctive than the rest of the question.

The tf-idf demonstrate two heavy cluster one with the question type “Ce”, “Care” and other

with “De ce”, “CAND”. One main aspect of such behaviour is tf-idf reattains more infor-

mation than BOW. It does not only stores the information of frequency but also preserves

the frequency of features per document which gives the semantic difference in the higher

dimension vector space. This behavior is also seen in the PCA 3D visualization where two

types of questions are highly distinctive.

Similarly, fig 3.15 shows the 2D and 3D tsne projection of RoITD dataset based on

question type using BOW. We can see that tsne projection shows that all the question type

are distributed throughout the vector space without any clustered distinction. This scenario

is similarly observed in case of using tf-idf in both 2D and 3D tsne representation as shown

in fig 3.16. The feature selection with both techniques such as BOW and tf-idf are unable

to distinguish the cluster of question types. Both BOW and tf-idf does not have significant

difference based on the visualization of the features. Unlike PCA, TSNE maintains the
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(a) (b)

Figure 3.13: (a) PCA 2D Visualization of BoW. (b) PCA 3D Visualization of BoW.

(a) (b)

Figure 3.14: (a) PCA 2D Visualization of TF-IDF. (b) PCA 3D Visualization of TF-IDF.

(a) (b)

Figure 3.15: (a) TSNE 2D Visualization of BoW. (b) TSNE 3D Visualization of BoW.
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(a) (b)

Figure 3.16: (a) TSNE 2D Visualization of TF-IDF. (b) TSNE 3D Visualization of TF-IDF.

local structure of the data by minimizing the Kullback–Leibler divergence (KL divergence)

between the two distributions. Also due to the non-linear nature of TSNE, if fails to capture

the linear semantic relationship between question type of the context. Similar techniques

were used successfully by the authors [49]

3.6 Evaluation

We evaluate the question classification dataset with various models to demonstrate its

applicability. We have detailed the process of labeling the dataset in the main file. We

used a simple lexicon search rule to assign label to the context. We extracted that there

are several types of question based the WH question in English. We understood that more

than the type of context/entity, their question types heavily depends on what type of WH

aspect is there in the context. Hence, we assigned label based on WH questions and let the

model decide the entity that are responsible to make the prediction. We used WH words as

the feature to decide the labels. The model itself will determine the important features that

makes a particular prediction. This is much simpler way and does not require any kind of

additional dictionary. So, the question classification task is not to classify as the entity but

as the type of question. This approach basically tells models to find the relevant context by

themselves without any additional information. This dataset can be used in two ways: first

with the WH question in the context and second by removing the WH questions from the

context while preprocessing the context. Our experiment and results demonstrate that most

of the models are able to understand the context and perform better except Naïve bayes.
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Our intention was to create a self-contained QC task without using any library and only

relying on intuition.

3.6.1 Support Vector Machine

For two-group classification issues, a support vector machine (SVM) is a supervised

machine learning model that uses classification techniques. SVM models can categorize

new text after being given sets of labeled training data for each category. They have two

key advantages over newer algorithms like neural networks: greater speed and better per-

formance with a limited number of samples (in the thousands). This makes the approach

particularly well suited to text classification issues, where it’s common to only have access

to a few thousand tagged samples.

A simple example is the easiest way to understand the fundamentals of Support Vector

Machines and how they work. Let’s say our data contains two features: x and y. The

hyperplane (which in two dimensions is essentially a line) that optimally separates the tags

is produced by a support vector machine using these data points. This line serves as a

decision border, and anything that falls on one side of it will be divided into two classes.

3.6.2 Naive Bayes

The Naive Bayes algorithm is a probabilistic machine learning technique that may be

applied to a wide range of classification applications. Filtering spam, categorizing doc-

uments, and predicting sentiment are examples of common applications. The term naïve

refers to the assumption that the features that make up the model are unrelated to one an-

other. That is, changing the value of one feature has no direct impact on the value of the

other features employed in the algorithm. Because it is a probabilistic model, the program

may be quickly coded and predictions made. Quick in real time. It is scalable as a result,

and it is traditionally the algorithm of choice for real-world applications (apps) that must

reply to user requests instantly.
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3.6.3 Decision Tree

Decision Tree is a versatile tool that can be used in a variety of situations. Both clas-

sification and regression problems can be solved with decision trees. The name implies

that it use a tree-like flowchart to display the predictions that result from a sequence of

feature-based splits. It begins with a root node and finishes with a leaf decision.

• Root Nodes: It is the first node in a decision tree, and it is from this node that the

population begins to divide according to numerous characteristics.

• Decision Nodes: Decision Nodes are the nodes th at result from separating the root

nodes.

• Leaf Nodes: Leaf nodes or terminal nodes are nodes where further splitting is not

possible.

• Sub-tree: A sub-section of this decision tree is referred to as a sub-tree, just as a

small portion of a graph is referred to as a sub-graph.

• Pruning: is cutting down some nodes to stop overfitting.

3.6.4 Tsetlin Machine

Tsetlin Machine is a new categorization method based on a team of Tsetlin Automata

that manipulates expressions in propositional logic (TA). TA is a deterministic automaton

with a fixed structure that learns the best action from a set of suggestions from the environ-

ment. Each input bit in Tsetlin Machine is represented by two TAs, TA and TA’. The input

sample’s original bit is controlled by TA, while its negation is controlled by TA’. Each TA

represents a single literal. A literal denotes an input bit or its inverse. Any TA used by

a Tsetlin Machine has two actions, each of which has 2N states. total. Action "exclude"

is chosen for states 1 to N, while action "include" is chosen for states N + 1 to 2N. A TA

conducts "include" or "exclude" based on the current state for each iteration. As a result, a

reward or punishment is triggered. If the TA receives a reward, it moves to the deeper side

of the action, whereas if it receives a penalty, it moves to the center and eventually jumps

to the other side.
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Tsetlin Machine controls a decentralized team of TAs using a novel game theoretic

strategy. By incorporating or eliminating specific literals, this technique aids the TAs in

learning an arbitrarily complex propositional formula. The included literals, in particu-

lar, form clauses through the operation of conjunction. After training, each sentence is

anticipated to catch a sub-pattern. Let us consider the input feature as a vector with a vo-

cabulary size of n words, which is represented in BOW as Xs = [x1, x2, x3, · · ·, xn, · ·
·, x2n, x2n+1, x2n+2, · · ·, x2n+12] with xk∈{0,1} and k ∈ {1, . . . , 2n+12}. Here, (x2n+1) to

(x2n+6) represent LOC1
vec and LOC2

vec. Similarly, (x2n+7) to (x2n+12) represent SC1
vec and

SC2
vec. Let q be the number of classes (q = 3 in ABSA task: positive, neutral and negative).

If a pattern has m sub-patterns, the pattern can be captured using q×m conjunctive clauses

Cj
i , 1 ≤ j ≤ q, 1 ≤ i ≤ m:

Cj
i =

∧
k∈Iji

xk

 ∧

∧
k∈Īji

¬xk

 , (3.1)

where Iji and Īji are non-overlapping subsets of the input variable indices, I ij, Ī ij ⊆ {1, · · · , 2n+
12}, I ij∩ Ī ij = ∅. The subsets decide which of the input variables take part in the clause, and

whether they are negated or not. The indices of input variables in I ij represent the literals

that are included as is, while the indices of input variables in Ī ij correspond to the negated

ones. Among m clauses in each class, clauses with odd indexes are assigned positive polar-

ity (+) whereas those with even indices are assigned with negative polarity (-). The clauses

with positive polarity vote for the target class and those with the negative vote against it.

A summation operator aggregates them by subtracting the total number of negative votes

from positive votes, as shown in Eq. (3.2).

f j(Xs) = Σm−1
i=1,3,...C

j
i (Xs)− Σm

i=2,4,...C
j
i (Xs). (3.2)

For q number of classes, the final output y is given by the argmax operator to classify

the input based on the highest sum of votes, as shown in Eq. (3.3).

y = argmaxj
(
f j(Xs)

)
. (3.3)
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3.6.5 Results

The performance of these above-mentioned models are explained in this section. Table

3.7 shows the macro-F1 and micro-F1 for all selected baselines. As we can see that SVM

performs really good with micro-F1 reaching 95.23& and macro-F1 reaching 85.06%. This

means that even the dataset is unbalanced, the model performs good on the task. Decision

tree also performs quite similar to the SVM in terms of macro-F1 and micro-F1. Addition-

ally, on of the most powerful linear model i.e., logistic regression outperforms other models

by achieving Macro-F1 of 87.45% and 95.78% However, Tsetlin Machine surpasses all of

them by reaching macro-F1 to 88.61% and micro-F1 to 95.98%. On the other hand, Naive

Bayes performs poorly on this particular task with lowest macro-F1 and micro-F1. This

baselines shows that even though the dataset is unbalanced, it is well learnt my majority of

the models.

Table 3.7: Performance of various models on question classification task.

Models Macro-F1 Micro-F1
SVM 85.06 95.23

Naive Bayes 68.55 87.01
Decision Tree 85.45 95.34

Logistic Regression 87.45 95.78
Tsetlin Machine 88.61 95.98

3.6.6 Discussion

Since, the comparison here are done only with relatable models and the base of com-

parison is interpretability. Interpretability is an important aspect of modern NLP and in the

application of chatbot. Many scholars began to investigate ways to explain the intelligent

system, with the primary goal of creating more understandable representations to lessen

the complexity of difficult rules. AI systems today, on the other hand, are not the same as

rule-based systems in the past. Because of the growing number of factors and procedures,

the model gets more complicated, making it more difficult to explain the model’s choice.

So yet, there hasn’t been a consensus on a definition. Doshi-Velez and Kim [68] define

interpretability (or explainability) as the ability to explain or communicate something to a

person in a way that they can comprehend.

Simple models, such as linear classifiers, are often easier to grasp, but a sophisticated
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Figure 3.17: Statistics of Question Classification Dataset based on type of questions.

model, such as a deep neural network, is challenging to comprehend due to its layer-

wise structure and nonlinear computing. In this section, we define the explainability of

an AI system as the ability to explain the reason why it makes the decision in a human-

understandable way,alternative approaches of it. There’s a natural question that arises. Why

do we need to be able to explain things? The causes may be divided into four categories:

user trust, system change, system learning, and moral and legal concerns.

• Trust from users: A black box is the sophisticated machine learning model. Or-

dinary users have no idea how it makes judgments or how to ensure that they are

right. The users may doubt the model’s reliability if the model cannot explain itself.

However, once the model can explain itself, users are better able to understand why

the model appears to make the right or wrong decision, so that users can have more

confidence in the system.

• Modification of the system: The problem with complex models such as deep neural

networks is that they have too many operations and parameters. If developers do not
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know why an AI system performs poorly, they cannot debug it. It should therefore

be easier to improve an AI system if the developer is able to easily modify it.

• Learn from the system: The AI system can sometimes teach us new insights. For

example, the system has outperformed human Go players and performed strategies

that we had never imagined. With explainable AI models, we can obtain some new

insights or knowledge.

• Moral and legal issues: Since artificial intelligence has gradually entered our ev-

eryday life, legal issues related to AI’s wrong decisions have received relatively little

attention until recently. Hence, our reliance on black-box models makes it difficult

to find a perfect solution to these legal issues.

Humans consider interpretable models easier to understand without explicit explana-

tions. For instance, rules-based methods such as decision trees have nodes and branches

to clarify their reasoning when making decisions. For humans, tracing from the leaf to the

root is a more intuitive and straightforward way of understanding a decision. In order to

overcome the difficulty of constructing high-accuracy interpretable trees, Bayesian Rule

List introduced a Bayesian framework to rule-based methods. As the number of nodes and

rules grows rapidly, it becomes harder to understand the classifier as a whole. There are

two modes of explainability Local and Global:

Local Explainable Methods

If the explainable method can generate explanation for the model around a given input

point, then we call this a local explanation. The behaviour of a model is usually explained

by using some inputs and their accompanying predictions as examples. Based on whether

the explanation is derived directly from parameters or structures in the model, the local

explanations are divided into two types, model-unaware explanations and model-aware

explanations.

• Model-unaware explanations: Generally, model-unaware explanations are derived

from sensitivity. A squared partial derivative is used in image classifiers to calculate

the saliency score based on a given input image, highlighting the most sensitive part

that gives the classification the strongest spatial support. Similarly, Li et al. [126]
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compute the first-order derivative as a salience score for a unit from different RNN

classifiers for sentiment analysis, and generate heatmap matrices as an explanation

of which dimension in the embedding vector or which word is crucial for predicting

the outcome. Despite the effectiveness and intuitiveness of generating explanations

based on sensitivity, complex models have a high degree of non-linearity, resulting in

noisy explanations. In spite of their advantages, such as the ability to compare differ-

ent deep models easily, this method has difficulty understanding the global situation

and having inconsistent explanations for different samples.

• Model-aware explanations: The parameters of the model are often used to derive

model-aware explanations. Convolutional neural networks visualize important pix-

els in input images that correspond to classification using gradients from the final

convolutional layer. In addition, Layer-wise Relevance Propagation (LRP) is used to

transfer the relevance score from the output layer to the input layer of CNNs using

linear sum-pooling and convolution or simple multiple perceptron. This approach

might be used to calculate the contribution of each input variable. Certain efforts

try to show how the deep model learns, to visualize the RNN’s hidden units, and to

discover some learning processes for how an LSTM language model learns.

Global Explainable Methods

We consider an explanation to be global if it is generated for the whole input space or

as an overview of how the model acts. We also address global explainable methods from

model-unaware and model-aware approaches, which are similar to the category of local

explanations.

• Model-unaware explanations: There hasn’t been much research on how to produce

model-unaware explanations worldwide in a model-agnostic manner. Ribeiro, Singh,

and Guestrin [50] [172] construct global explanations by presenting users with a

collection of sample local explanations one at a time. This strategy is prone to failure

when there is an abundance of training data and users are unable to recall a large

number of representative local explanations in order to develop a global view.

• Model-aware explanations: One approach is to consider the activity of each neuron

in response to an input as a semantic property of the concepts represented by this
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input text. They connect neurons with human-understandable ideas throughout this

dissecting process to determine how effectively a notion is represented by a single

unit.

Above-mentioned points clearly indicate the importance and attempt of explainability

in the field of NLP. Since, our task deals with a feasible QA model for chatbot application,

building a prerequisite question classification models is as important as it gets. Since, the

user asks for a definite explanation of the prediction and there is a massive bottleneck to

explain the big language models, we attempt to provide a simple logical explanation of

question classification. This basically reduces the gap between explanability and accuracy

to some extent. Hence, we used all the simple explainable models for this task. Among

the selected baselines, logistic regression is arguably simple and interpretable model along

with decision tree.

Decision tree being one of the great model for explaining the model’s prediction. It

uses root and nodes to explain its decision with a very good accuracy as shown in Table

3.7. However the limitation of this model comes into the picture when the size of tree

grows due to big datasets and features. This creates bottleneck for scalability. Another

approach for easier explanability is Logistic Regression which performs great compared

to other simpler machine learning models. The explainability of the model is visualized

by using the weights of the features impacting the prediction. However, this mathematical

weight coefficient only express the impact of each features which can not be comprehend

to humans to make a logical interpretation. Human tends to understand logically rather

than evaluating mathematical weights. Hence, in order to fill this gap, we used Tsetlin

Machine that not only performs better than all selected models but also offers human level

interpretation. TM uses clauses to learn pattern from the combination of features known as

propositional logic. Such propositional logic are easier to understand for human. This is

because propositional logic are combination of features and their negation in conjunctive

form which is much easier to comprehend in compared to mathematical weights and trees

strucutre.
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3.7 Outlier Detection

Machine learning (ML) models offer immense flexibility through their ability to learn

from many types of data including both structured (e.g., client information and tabular data)

and semi-structured (e.g., text data and images) [107]. However, this learning flexibility

requires that the model be able to deal with outliers, which in this case are data points

that are substantially different from the training dataset [97]. Since these types of outliers

are typically encountered after model deployment, the model must be able to detect them

while running to prevent performance reduction [21]. Unfortunately, outliers are often

present within inlier data clusters 3.18, making them difficult to identify despire the fact

that they follow inconsistent patters compared with the inliers [107].

Figure 3.18: Outlier and inlier distribution of the MNIST dataset. [107]

Generally, outlier detection methods generally fall into one of three categories–parametric,

non-parametric, and semi-parametric [33,36]. Parametric models use pre-selected distribu-

tion models to fit data, making them the least flexible with limited applications [204]. Non-

parametric models are more flexible with greater autonomy similar to neural networks.

Semi-parametric models combine the speed and complexity of parametric methods with

the flexibility of non-parametric models, making them a popular option for a variety of

applications such as Gaussian mixture models [75, 77, 110, 147].
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Of the available outlier detection methods, K-means, Density-Based Spatial Clustering

of Applications with Noise (BDSCAN), Gaussian Mixture Models (GMM), and One Class-

Support Vector Machine (OC-SVM) are among the most commonly used. K-means uses

partition-based clustering to group data according to similarity where similarity is defined

by distance [223]. Clusters are centered with a radius defined by the farthest point in the

cluster, making this method ideal for circular data groupings [223]. K-means relies on hard

classification where data points are defined by which cluster they belong to, and the proba-

bility of a given data point belonging to any given cluster is not calculated [223]. DBSCAN

is an unsupervied algorithm that uses density-based clustering to identify high-density re-

gions, providing identification capability for arbitrary-shaped clusters and clusters contain-

ing noise caused by outliers. GMMs use a similar clustering procedure as k-means, but

includes modifications such as variance inclusion that allows for calculation of the distri-

bution shape [137]. As such, GMMs are able to handle a wide variety of cluster shapes,

including very oblong ones [137]. GMMs also include soft calculations, where the prob-

ability of a data point belonging to any of the possible clusters is defined [137]. SVMs

rely on hyperplaces within multi-dimensional space to separate observations by class [23].

OC-SVM is used for datasets where all the data belongs to only one class, allowing the

algorithm to learn about the structure of inliers to improve outlier identification [23].

Recent literature has established that deep learning methods outperform machine learn-

ing methods for outlier detection applications. A new Generative Adversarial Networks

(GAN) with Variational AutoEncoders (VAE)-based generative deep learning model that

separates inliers and outliers using uniform distributions achieved by variational autoen-

coders has been introduced [107]. This method targets zero-shot outler detection where the

applied method cannot access outlier data points from the training dataset. This method

learns the inlier underlying structure to improve outlier identification. A OC-SVM trained

on the training data loss values is used to form the final decision [46]. Three primary losses

are obtained using this model (i.e., reconstruction loss, KL-divergence, and discriminative

loss) using the generative and adversarial portions of the model. Predictions are then made

by wrapping these losses using a one-class SVM. An evaluation of this model performance

along with other state-of-the-art methods for outlier detection, including K-means, DB-

SCAN, GMM, and OC-SVM, confirms that this new VAE-GAN-based model outperforms

the other models for all datasets.

For the task, we have asked our crowed-source workers to label each question-answer
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pair with 1 if contain at least one grammar mistake, according to their understanding. This

generated a total of 709 positive question-answer pairs, from a total of 9157. The label data

set is publicly available [148].

3.7.1 VAE-GAN Based Zero-shot Outlier Detection

The Encoder (E), Decoder/Generator (D/G), and Discriminator (D) form the primary

components of the VAE-GAN-based model. The dataset being used is described by X =

(xi, yi)
N
i=1 where N represents the number of samples, xi is the data sample, and yi is the

optional class of the ith sample for which yi ∈ A,A = {0, 1} is for the purpose of evalua-

tion [107]. In this case 0 represents an inlier while 1 represents outliers. The Convolutional

Neural Network/Multi Layer Perceptron (CNN/MLP) Encoder with WE weights provides

latent representation of the inliers and outliers. These representations can then be applied

as random seeds to generate data, defined as [107]:

µ, σ = E(x); z N(µ, σ) (3.4)

where z ∈ Z are the extracted features that represent the data state. For an input sample

of xin inliers, the Encoder output is zout = E(xout. The Encoder output is then fed to the

Decoder/Generator. This is the intersection between the GAN and VAE portions of the

model. As z is sampled from the normal distribution provided by the Encoder, z is fed

through the Decoder to reconstruct the original input samples as follows [107]:

x̂ = D(z); z N(µ, σ) (3.5)

where x̂ is the reconstructed input sample contained in the latent representation. This is

additionally referenced by xgen = G(z). The Discriminator forms the final portion of the

model. The Discriminator is a binary Feed Forward Neural Network binary classifier that

determines the data point type (i.e., real or generated) as shown by the following equation

[107]:

a = D(w);w ∈ (Xgen ∪Xreal); a ∈ A;A = {0, 1} (3.6)
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where Xgen is the collection of the generated samples produced by the Generator while

Xreal is the actual dataset. The standard Evidence Lower Bound (ELBO) is used to train

the neural networks, along with adversarial generative loss for the GAN component. Three

loss functions are used for the VAE-GAN-based model. The first is the distance function

between the input and reconstructed samples, known as the Reconstruction Loss, LR, and

described by the following equation [107]:

LR = d(x, x̂);x ∈ (Xgen ∪Xreal) (3.7)

where d(x, x̂) is the Mean Squared Error in the case of images and the cosine distance in

the case of vectors. The KL-divergence, LKL [118] is the next loss function where the

variational approximation q(z|x(i)) = N(µ, σ) is represented by the Encoder output for

each sample, and the true distribution p(z) = N(0, 1) of the latent variable, z, serves as the

normal distribution of mean = 0 with standard deviation = 1. This loss function is described

by [107]:

LKL = KL(q(z|x(i)), p(z)) (3.8)

The discrimination probability, LD is the final loss function and used for anomaly detection.

This loss function is provided by the Discriminator directly using the original sample as

opposed to the reconstructed or generated samples and is described by [107]:

LD = D(x);x ∈ XRel (3.9)

These three losses are combined in a 3-feature dataset that is fed into a One-Class SVM to

classify samples as inliers or outliers.

The methods were evaluated using three datasets–MNIST [123], CreditCardFraud [185],

and KDDCUP99 [26]. The CreditCardFraud dataset serves as an example of datasets con-

taining a small number of outliers and a large number of inliers. In this case, the loss

functions of the VAE-GAN-based algorithm are able to identify the outliers and inliers

without the need for the OC-SVM. Table 3.19 compares the outlier detection performance

of the tested models using F1-scores [107]. In this case, DBSCAN shows the worst per-
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formance (F1-score = 0.5542) while GMM shows the strongest (F1-score = 0.694), fol-

lowed by OC-SVM then K-means. Table 3.20 shows the detailed performance results of

the VAE-GAN-based method on the CreditCard-Fraud dataset, along with the performance

using each of the loss functions individually [107]. The F1-score of this model is substan-

tially higher than the other tested models (F1 = 0.8376), and the Reconstruction loss-only

test produced the highest performance compared with the other two loss functions (F1 =

0.8165).

Figure 3.19: Outlier detection performance of various models on CreditCard-Fraud raw
dataset. [107]

Figure 3.20: Zero-shot outlier detection performance of VAE-GAN-based method on
CreditCard-Fraud dataset. [107]

Tables 3.21 and 3.22 compare the VAE-GAN model performance compared with other

state-of-the-art models for the MNIST and KDDCUP99 datasets, respectively [107]. MNIST

is an image-based dataset while the KDDCUP99 dataset allowed for comparison with other

GAN-based models. In the case of the MNIST dataset, the VAE-GAN-based model out-

performed the other models with the exception of the lowest outlier percentage (10%),

where the VAE-GAN-based model is only outperformed by the D(R(x)) model. In the

case of the KDDCUP99 dataset, the VAE-GAN-based model produces the second-highest

F1-scores for zero-shot outlier detections. Although DAGMM-NVI outperforms the VAE-

GAN-based model, the scores are nearly equivalent (0.93 compared with 0.92).

The VAE-GAN-based model was also evaluated for supervised outlier detection using

the CreditCard-Fraud dataset [107]. A summary of these results is provided in Table 3.23.
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Figure 3.21: F1-scores of VAE-GAN based method compared with other zero-shot outlier
detection methods for the MNIST dataset. [107]

Figure 3.22: F1-scores of VAE-GAN based method compared with other zero-shot outlier
detection methods for the KDDCUP99 dataset. [107]

Once again, the Reconstruction Loss-only produces the highest F1-score compared with

the other two loss functions, and the overall model produces a high F1-score of 0.9131.

Figure 3.23: VAE-GAN based method supervised outlier detection performance for the
CreditCard-Fraud dataset. [107]

Overall, it is clear that the addition of a VAE to traditional GAN models greatly im-

proves algorithm performance for outlier detection applications. This VAE-GAN model

feeds the extracted loss functions for each component into an OC-SVM to classify data

points as inliers or outliers. This method performs well for a wide variety of datasets, in-

cluding image and high-dimensional tabular datasets. Additionally, the model maintains
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strong performance for variations in the amount of outliers contained within the data.

3.7.2 Results ROITD outlier detection

Natural language processing (NLP) has been developed for many advanced artificial

intelligence (AI) applications by enabling natural language comprehension, interpretation,

and manipulation. However, in order for these applications to succeed, a high-quality cor-

pus is needed. This is no trivial task since data access itself can pose a challenge, and the

corpus must maintain proper grammar and any other required formatting to run the NLP

model.

An NLP library corpus is a collection of natural language text or audio that has been

organized into a well-formatted dataset. Ideally, this corpus is fairly large. The corpus is

then used to train AI and machine learning (ML) NLP models. The corpus also requires

a specific formatting, including proper grammar, to provide the model with the ability to

process natural language along with contextual data. Once a properly structured corpus

is provided, the model can complete advanced applications including question answering

(QA) or summarization tasks.

Annotation is used to enhance and modify a corpus with advanced information, such

as part-of-speech tagging, word senses, or word meanings. By annotating the corpus, a

model can be trained to recognize various speech patterns. Whatever the model learns

about natural language from the corpus can then be translated to new, unannotated data to

deliver impressive results. As previously mentioned, one important aspect of the corpus is

that it be sufficiently large. This provides a statistically robust natural language sample for

the model to learn effectively. However, this cannot come at the expense of data quality.

The presence of any improperly formatted data within the corpus can dramatically reduce

the final model performance. It cannot be emphasized enough that the quality level of the

corpus is by far the most important factor.

That being said, a larger high-quality dataset will produce stronger results, although it

is possible for a corpus to be too large. A corpus that is too big can slow down the model

and produce inaccurate results. For instance, too much data can produce overfitting where

a model learns from the corpus details and noise too well. This reduces model performance

once new data is introduced. The corpus size controls manageability and practicality of
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data collection since a substantial time investment is required to transcribe and annotate

the thousands or even millions of words required to produce a properly annotated, clean

corpus.

The most important aspects of creating a high quality corpus are accuracy, complete-

ness, and timeliness. The values and metadata included in the corpus must be checked for

accuracy. This will provide efficient and effective task performance by the model. This

includes cleaning the data by removing any errors including outdated, incorrect, irrelevant,

or duplicate data. Data cleaning ensures the data quality. Next, the corpus data must be

checked for completeness to be sure that there are no gaps or other missing information that

will prevent the model from learning natural language insights. Finally, the corpus needs

to be continuously updated to be sure the data maintains relevancy. It is also important to

include balance within the corpus. This means that the data collection process should be

streamlined and structured to ensure relevancy. The data balancing step is dependent on

the final application.

Grammar itself can be used to teach important language tools to models, making this

component especially important in a NLP corpus. For instance, scheduling information is a

common inquiry input from users, but this information is generally contained within a com-

plex relationship between prepositional objects and parent verbs. If the NLP corpus does

not contain accurate grammar, the model can experience several failures including learning

incorrect language rules, sourcing incorrect information, and producing outputs that cannot

be understood by humans. This situation extends to many other language examples where

grammar is used to define context or even meaning within a sentence. Ensuring that the

grammar within a training NLP corpus is correct will ensure the most accurate model re-

sults by teaching proper sentence structure that will be translated to any output produced

by the model. This is also a critical aspect in the production of text than can be understood

by humans, which is often the main objective of NLP tasks.

We proceed to compare Alphagan [107] with more established methods such as K-

means, LOF,OC-SVM and DBSCAN and the results are displayed in Table 3.8 3.25 3.24.

Regarding the methods, we note that the first most efficient method is Alphagan, with

an F1-score of 67.8 % and an accuracy of 96%. Out of 9157 Questions/Answers 8803 were

correctly predicted. And out of 706 positive Q/A, 352 were predicted as outliers.
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Method F1
Alphagan 0.6786
LOF 0.4865
K-means 0.4823
BDSCAN 0.4799
GMM 0.4151
OC-SVM 0.4814

Table 3.8: Performance of different outlier detection algorithms on RoITD dataset .

Figure 3.24: ROITD Alphagan Test Loss Distance.
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Figure 3.25: Alphagan Vizualization.
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Chapter 4: MACHINE LEARNING ADVANCEMENTS

This chapter provides an overall literature review of basic machine learning (ML) con-

cepts. We then move on to a specific area of ML called DL. After these basic concepts

have been discussed, we explain the BERT model in detail. The BERT model includes

transfer learning like transformers, or self-attention mechanisms, which are elaborated on

to understand their role in the proposed project.

4.1 Machine Learning

At first we explain the basic concept of Machine Learning which is the base for recent

Natural Language Processing. We start with the concept for machine learning leading to

more sophisticated model in the later part.

Arthur Samuel first coined the term "machine learning’ around the late 1950’s [182].

Samuel is a researcher in Artificial Intelligence who developed statistical modeling tech-

niques with the capability of learning patterns from sample data. When the model is per-

fectly trained, it is capable of performing classification, prediction, and decision when new

data (excluded from the training sample) is passed. Multiple methods can be implemented

to categorize the learning process including reinforcement learning, unsupervised learning,

and supervised learning [146].

4.2 Deep Learning

Deep Learning is one of the most popular choices for recent advances in NLP tasks,

which consist of various important elements. We here explain the basic concept of deep

learning and the evolution of their variants. Deep Learning (DL) is a ML technique that

uses artificial neural networks to simulate the structure and functions of human brains [63].

DL is also considered to be a structured and hierarchical learning that uses huge number

of hidden layers in non-linear processing. DL helps to extract features from the unstruc-

tured data and generate various form of representation. DL is also defined as a hierarchical

probabilistic model that recognizes pattern with several layers of abstraction. Knowing that

there are multiple data samples, these multi-layer neural networks are able to decompose a
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problem into various smaller and more manageable abstractions. Compare to other mod-

els of ML, DL performs significantly better but also requires intense parameter tuning to

achieve high performance. This model has opened a vast area of research to develop newer

models based on neural networks or to fine tune parameters for better performance. Some

of areas where DL has excelled include NLP, speech recognition, and computer vision.

4.2.1 Neural Networks

The main approach of DL is the Deep Neural Network (DNN), which is very different

from shallow neural networks . DNN consists of several hidden layers (usually more than

3 hidden layers) and can be trained by both supervised and unsupervised methods. These

models are generally composed of nodes in a particular way that somewhat replicates the

interactions between biological neurons. In essence, it acts like a neuron to pass infor-

mation based on input to create the simplified mathematical model, usually referred to as

the perceptron [175]. Each neuron in the network receives multiple numeric values as in-

put. These inputs are assigned with weights w that gives importance from the input to the

computed output at the node.

4.2.2 Recurrent Neural Networks

Unlike traditional feed-forward neural networks (FNN), Recurrent Neural Network

(RNN) [131] has the function of remembering the previous information and applying it to

the current input. Although CNN can effectively for spatial data, it is not an ideal method

for processing sequential or temporal data. The RNN architecture is especially important

for NLP, because the entire text consists of a sequence of words, and, therefore, a sentence.

Repetitive RNN connections can be visualized as unfolded as in Fig 4.1. Here, the origi-

nal layer will be copied as many times as necessary to cover all the timestep of the entire

sequence.

Sequential data is usually split by time, and RNN accepts input data mapped to data at

a given time step. Each time the output of a step is forwarded back to the network, it will

ensure the previous state is recorded, which will affect the subsequent step results, so it is

called “recurrent”. Persistence information allows the network to process the next inputs,
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including previous inputs. Basic recurrence can be expressed as

ht = fh(ht−1, xt) (4.1)

where ht and ht−1 are the new hidden state and previous hidden state, respectively, fh is

the activation function, and xt is the input at time step t.

Figure 4.1: Unfolded recurrent Neural Network [124].

4.2.3 Long-Short Term Memory

The traditional RNN does not support long sequences of data. In addition, because the

gradient will disappear or explode, RNN training may be difficult, causing problems when

propagating back at large temporal intervals [37]. To manage the long-term dependence

on training data, a new network architecture with learning gates is used, which is known

as LSTM. LSTM contains memory blocks with memory cells called gates in the repeated

hidden layer, as shown in Fig 4.2.

These gates help regulate information flow inside the LSTM unit. The usual gates

included are an input gate it, an output gate ot and a forget gate ft. In addition, the LSTM

maintains two hidden states during each time step. First, the hidden state ht already exists

in the traditional RNN. Second, the state of the cell state ct acts as a memory that interacts

with the gates. The LSTM training process mainly focuses on learning when to initiate

an activation in internal state of its cell and when to activate the output. The main idea

of LSTM is not only to evaluate the influence of each word in the sequence on the hidden

state, but also to include unimportant words that are safe to "forget". In addition to these

mechanisms, the cell state transfers the gradient in both directions in a cleaner flow, thereby
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Figure 4.2: LSTM cell structure with an internal gates (Taken from [72]).

reducing the possibility of the gradient becoming worse.

4.3 Natural Language Processing

Natural Language Processing is an old and vast concept that deals with the understand-

ing of language based on the text or speech. Since this thesis deals with the text, we here

explore its sophisticated variants and the state-of-the-art models.

4.3.1 Language Modeling

The original application of Language models [85] was to solve speech recognition prob-

lems. In fact, they still play a key role in modern speech recognition systems. They are

also widely used in other NLP applications. The parameter estimation techniques origi-

nally developed for language modeling are useful in many other situations, such as tagging

and analyzing problems. Language modeling uses language features and methods through

observation to find how words are related, but not by rules, which can become too com-

plicated. It is a probabilistic model that can predict the next word based on the word se-

quence. In more complex models, a larger sequence-based word context will be considered

to complete sentences, paragraphs, or documents. Language models are able to predict the
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continuity of sentences as well as generate sentences.

4.3.2 Encoder-Decoder Model

The general architecture of NLP using deep neural networks is the encoder-decoder

model [197]. The network is comprised of two parts: encoder and decoder. The encoder

converts the input data into an internal representation (lower dimensional than the original

input). The decoder uses this internal representation to perform tasks designed for the

network. Encoders are usually not task-specific and can be pre-trained for other tasks.

A common method for training non-task encoders is to create a codec model whose

task is to recreate the input from its hidden representation. This model is referred to as

an autoencoder. The key is that the internal representation contains enough information

to accurately reproduce the input, so it can be effectively replaced. Because it has fewer

functions than the input, the network working on the representation learned by the encoder

requires fewer parameters and can train faster or converge in fewer training steps. This

model has the added advantage of enabling multiple decoder training with the same encoder

and vice versa. This is a method of machine translation where an encoder is trained for

each source language and a decoder is trained for each target language, rather than training

a complete network for each source-target pair.

4.3.3 NLP Tasks

From part-of-speech tagging (POS) to the dialogue system, NLP has been developed

to now provide a vast range of tasks to solve problems of all scales. Generally, complex

NLP tasks are divided into several sub-tasks to achieve the desired goals. Whatever the

approach, ML or DL, NLP tasks can be listed in the following categories:

Text Classification Tasks
Text classification usually does not have to maintain word order. This task usually uses a

method similar to a set of words to process the entire corpus. It is used to predict labels

and categories based on main content, but it is also very common to observe sentiment

analysis. It is used to detect offensive language and spam, and it supports proper document

classification.
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Word Sequence Tasks
Unlike text classification, the order of words is important for this kind of task, because

it operates in a word sequence. The order of words is particularly important in language

modeling (Section 2.3.1), so the derived task includes predicting the previous word and

the next word. Some models can extend predictions to complete sentences. Another com-

mon possibility is to generate text recursively derived from predicting the next sentence.

The known uses for these kinds of tasks include Named Entity Recognition (NER), POS

tagging, language translation, and text completion.

Sequence to Sequence Tasks
This category is built upon word sequencing. These tasks are also called seq2seq. where the

input sequence is taken, and the transformed sequence is generated as output. To this end,

encoder-decoder model and hidden representations are used. Some typical applications

include translations, summarization, Question Answering (QA).

Dialog Systems
NLP is critical to the strength of conversational agents. These systems require high per-

formance in natural language to correctly detect user intent. In addition, it should give

appropriate answer. To this end, the system should be capable of combining tasks in the

categories listed above to perform applications related to understanding and generating re-

sponses. Depending on the scope, knowledge about the world must be integrated.

The dialogue system can be placed into two primary categories: goal-oriented and

dialogue-oriented. The first purpose is to realize the user’s intent in a specific context and

usually replaces the graphical user interface in which the desired transaction will be com-

municated. Many companies integrate goal-oriented dialogue as the interface to services,

a clear application in the hospitality industry, where reservation services are provided. A

pure conversational agent has no other purpose, only to keep the dialogue as human as pos-

sible. They posed challenges beyond NLP, and produced countermeasures that included

maintaining a state of dialogue, logical reasons for input through global knowledge, or full

attention to the topics discussed. In other words, the agent needs certain memory and active

learning ability to imitate human dialogue.
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4.4 Transfer Learning

Transfer learning defines a method in which the basic model of a given source domain

of task A can be reused to solve another target task B that may belong to another target

domain. The main idea is not to create a complete model for each specific task from scratch,

but to further create a basic model with additional data more suitable for the target task.

The categories of transfer learning are classified according to different situations. First, if

the data is selected in the original domain and the target domain. Second, the difference

between the original task and the target task. Figure 4.3 summarizes the existing taxonomy.

When learning is successfully transferred, that is, when the target task is completed

using a customized model, a scheme is called positive forward transfer, as proposed by

Ruder [177]. On the contrary, in the opposite case, when the adjustment impairs the ex-

ecution of the target task, a negative forward transfer can be observed. After additional

training, the performance degradation of the pre-trained model is usually due to differences

in new entries. For example, when the data sets used for pre-training and adaptation are too

far apart, such as two completely different languages, the weights of the model may return

to a random state and lead to an observation called catastrophic forgetting. The reduced

amount of data needed to adapt the basic model to different domains, cost-effective train-

ing, and good overall results are the primary advantages that enable DL experts to quickly

develop new models to handle various tasks.

4.4.1 Fine-tuning

A well-known method of using transfer learning for neural networks is to copy and cre-

ate the top n layers, where n is a variable that can be selected according to the particularity

required by the target task’s behavior. Two methods were created. First, it is a fine-tuning

method in which errors in specific tasks will be back-propagated, and the original weights

will be reset. Second, the frozen layers method, where it only learns new data in the last

layer and the weights of the remaining copied layers will remain unchanged. The rational-

ity of these methods is related to Yosinka’s‚ conclusion about the possibility of transferring

features in deep neural networks [225]. Research shows that the first or lower layers of

deep neural networks usually encode general information while the last or higher layer be-

comes increasingly detailed. Through transfer learning, the first layer is considered more

58



Figure 4.3: An overview of different categories of transfer learning (Taken from [154])

valuable, as it can summarize and support a wider range of domains.

4.4.2 Domain Adaptation

Domain adaptation is a form of transfer learning. The task remains unchanged, but the

domain changes, or the distribution between source and target changes. For example, con-

sider a model that has learned to classify reviews of electronic products based on positive

and negative sentiments and is used to evaluate hotel room or movie reviews. The task of

analyzing emotions remains the same, but the domain (electronic and hotel room) has been

changed. Due to the changes between the training and test data (often called domain shift),

applying the model to separate domains creates many problems. For example, sentences

containing phrases such as "loud and clear" are generally considered positive in terms of

electronic products but are considered negative in hotel room evaluations. Similarly, the use

of keywords such as "long" or "boring" that may appear in book review fields may not exist

at all in fields such as kitchen equipment reviews. Many studies have shown that inserting

domain specific vocabulary leads to better performance of the language models [150].
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4.5 BERT

In October 2018, Google published a Nobel language model called Bi-direction En-

coder Representations from Transformers (BERT) [64]. Its performance shows that it is

able to score state-of-the-art results in eleven NLP tasks. The comparison of BERT is

shown in [228] that shows it outperforms the state-of-the-art created by Elmo [159] on six

distinct non-trivial NLP tasks. The BERT model is composed of 12 bidirectional trans-

former encoder blocks [209], 768 hidden layers, and 110M parameters and is intensively

based on Attention mechanisms [134]. Here, we will introduce details about Attention and

Transformers that are important to understand the concept of BERT. We also explain the

the details on the pre-training and fine-tuning of the model.

4.5.1 Attention

Neural networks used to form the encoder-decoder models described here are designed

for solving sequence to sequence (seq2seq) problems [198] using a fixed length context

vector for internal representation.This limitation of having a fixed size length vector makes

it inefficient to deal with longer sequences, as it forgets the initial inputs. Attention mecha-

nisms, on the other hands, solve this problem through the addition of a layer that normally

sits between the encoder and the decoder, focusing on the context vector that helps the de-

coder to capture the entire global input sequence. This layer does not look into the original

input. Rather, it assigns weight to the output of the encoder, then calculates the weighted

sum and feeds it to the decoder. It acts as a memory and provides the hidden state of the

encoder nodes to decoder.

In a work on machine translation using deep neural networks, Bahdanu [29] explains

about an alignment model to train neural network to generate accurate translations with the

help of attention. Given two inputs in any two languages, the model predicts score to the

best matching words between two inputs. To design this model, author used a bidirectional

RNN encoder along with an alignment function that predicts score for each pair of words.

Here, we will explain other sub categories of attention that slightly differ in some properties

called Self-Attention and Multi-Headed Self-Attention.

Self-Attention: Self-attention, which is also known as intra-attention, is an attention

mechanism that creates different positions of a single sequence so that a representation of
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the same sequence is computed, as shown in Fig 4.4. Each word in the input sequence

is paired with the last words with the highest attention score for computing the related

representation. It has been a ground breaking work in machine reading, abstractive sum-

marization, or image description generation.

Figure 4.4: Representation of self-attention mechanism in a sentence.

4.5.2 Transformers

A transformer is a type of neural network architecture proposed by Waswami et at.

[209]. The transformer consists of the encoder and decoder but completely differs from

the structure of RNN and CNN, as shown in Fig 4.5. It relies on multi-head self-attention

mechanisms in both encoder and decoder. Such design has been proven to be very effective

for solving language-oriented problems, such as language translation and syntactic parsing.

Positional Encoding: The positional encoding is responsible for appending the nec-

essary information about the position of the tokens in the input sequence. This is a very

important parameter, because the transformer model relies neither on recurrence nor con-

volutions. Sinusoidal and cosine functions are needed to encode the position of the token

and the vector’s dimension.

Multi-Headed Self-Attention: We can know see the process of encoder as input em-

beddings into the sub-layer of attention referred as multi-headed self-attention. Let us

explain the different view adopted by the original paper. It considers the attention func-

tion as a mapping query Q and a key-value pair (K,V ) where the output is given by the
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Figure 4.5: Transformer Architecture [209].

weighted sum of the values. The alignment or compatibility function is described as :

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4.2)

where dk is the dimension of the queries and keys.
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A softmax function is a normalization function which accepts a vector z of K real

numbers and transforms the components of the vector into probability distribution. This

process bounds each component zi inside 0 and 1 whose total sum gives us 1. The formula

is given by:

σ(z)i =
ezi∑k
j=1 ezj

fori = 1, 2, ..., K (4.3)

The multi-headed model is computed through the scaled dot-product attention many times

in parallel that results scaled dot-product attentions to be concatenated and linearly trans-

formed into desired dimensions. It is claimed that this process allows the attention to take

different subspace representations at different positions into consideration for improving

the performance of single head attention mechanism. The process is clearly illustrated in

Fig. 4.6. The output of the attention layer is then normalized and passed to the feed for-

ward network. Moreover, the output of the encoder is fed to decoder. Here, the masking

and shifting of the output embeddings to the right are the conditions to make sure that

predictions are based on the known outputs of the previous positions.

Figure 4.6: Illustration of multi-headed self-attention [209].

Residual Connection and Normalization: From Fig. 4.5, we can see that the residual

connections or skip connections that sub-cuts every sub-layer to the normalization layers.
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These residual connections support both the forward and backward propagation and are

the mechanism that eliminates the problem of vanishing and exploding gradient. Addi-

tionally, the normalization is enforced to eliminate the co-variance shift that specifies the

distributions of the training and test sets being distinctive.

Feed Forward Networks: This sub-layer is responsible for transforming the output of

the encoder and decoder that are fully connected in the feed forward network. In [209],

they have implemented two linear transformations with ReLU activation between them.

4.5.3 Model Pre-training

BERT has been pre-trained for 40 epochs on 3.3 billion words of English corpus com-

bining the English Wikipedia dump of 2500M and Book Corpus of 800M. BERT is trained

using two techniques: Masked Language model (MLM) and next sentence prediction.

Masked Language Model: MLM strategy is a kind of language modeling that BERT

uses that not only considers the sequence preceding the word but also the surrounding

context of the given word. BERT heavily relies on bi-directionality that models the mask

randomly around 15% of the input tokens. This transforms an unsupervised text corpus

into supervised model. In brevity, a setup is designed where a language model predicts

only masked tokens, which makes the model learn the representations accurately in both

the directions at the same time.

Next Sentence Prediction: Next sentence prediction is another language modelling

method which BERT uses to predict the next sentence. This helps BERT to understand

the relationship between sentences in given language. This model selects a sentence pairs

A and B and in two ways. (i) B is the next sentence to A labelled as TRUE and (ii) B is

randomly selected sentence not related to A marked as FALSE. Model learns correlation of

the next sentence by training 50% on both the case.

4.5.4 Model Fine-Tuning

The input sequence of the BERT is an array of tokens processed with a special hidden

state token [CLS] at the beginning along with a [SEP] separator at the end of the sentence.

[CLS] tokens are responsible to encode the whole input for classification tasks. [SEP]
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tokens not only acts as the sentence terminator but also show the split between sentences if

includes more than two sentences. Figure 4.7 shows the input model for BERT.

Figure 4.7: Input Illustration for BERT [64]

BERT uses a very sophisticated tokenizer called Word Piece tokenizer that helps to split

words into more than two tokens. The main aim of tokenizing words into sub words is

to identify more words in the text with limiting vocabulary size. For example, a word

“dancing” is sub divided into “danc” and “##ing”. The prefix ## shows that this token is the

sub words of another original word. This technique helps in eliminating out of vocabulary

problem.

Fine tuning is usually done by feeding task specific input following the necessary pre-

processing explained earlier. It is very necessary for designing the tasks with same prepro-

cessing to fit into the BERT model. The major tasks for fine tuning BERT are sentence pair

classification, single sentence classification, and QA and single sentence tagging as shown

in Fig 4.8. However, it can be expand to other tasks if needed. Despite its fascinating model

to learn language model, it has a limitation of the fixed sequence length of 512 tokens that

includes [CLS] and [SEP] tokens.

4.6 ALBERT

A Lite Bidirectional Encoder Representations from Transformers (ALBERT) [122] is

an innovative new natural language processing (NLP) algorithm. Accuracy score compar-

isons such as the one shown in Figure 1 establish it as a superior algorithm compared with

other models. Additionally, ALBERT requires a fewer number of parameters compared

with its larger, more cumbersome previous version, Bidirectional Encoder Representations

from Transformers (BERT). In real-world applications, however, practitioners are unlikely
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Figure 4.8: Downstream tasks fine-tuning using BERT [64]

to find the smallest version of ALBERT any faster or more accurate than the original base

version of BERT. The benefits of ALBERT instead lie in the significantly improved ca-

pacity compared with the largest BERT variant, including higher NLP benchmark scores

achieved through successful scaling at these larger model sizes 4.9. As a result, ALBERT

is capable of fascinating innovation.

The BERT architecture has two dimensions that can be scaled up: (1) depth, or the

number of layers and (2) width, or the hidden size (i.e. the number of features in the

embeddings output in each layer, or Transformer Encoder, of the model). As shown in 4.10,

the BERT architecture peaks at BERT-large, which has a hidden size of 1024. Specifically,

increasing the hidden size from 1024 to 2048 significantly reduced the benchmark accuracy,
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Figure 4.9: Increasing hidden size of BERT- large leads to worse performance on RACE
[1]

indicating that the peak performance for the BERT model is achieved at lower hidden sizes,

and increases to the hidden size only negatively impact the results. Meanwhile, the highest

reported benchmark scores for the ALBERT model, which notably exceed those produced

by previous model versions RoBERTa and XLNet, are produced using their ALBERT-

xxlarge variant. This model has 12 layers and a hidden size of 4096. This is half the depth

but four times the width of BERT-large, demonstrating successful scaling capability, unlike

the scaling performance observed for BERT-large. There are a total of six primary changes

that the authors made to BERT to create the ALBERT model. These six changes will be

summarized in the next section, then assessed in detail in subsequent sections

Figure 4.10: Increasing hidden size of BERT- large leads to worse performance on RACE
[122]

Fig 4.11 lists all model configurations considered by the authors is [122] . The highest

benchmark scores are achieved by the ALBERT-xxlarge variant, which uses only 12 lay-

ers but length 4096 embeddings. In 4.11, ‘Parameters‘ are listed in terms of the number

of unique parameters, which is helpful for assessing the model‘s memory requirements.

ALBERT‘s memory requirements are dramatically smaller compared with BERT. The

ALBERT-xxlarge model uses only 235M parameters compared with the 1270M used by

the BERT-xlarge model. The compute requirements of each model, however, are a dif-

ferent story. Examining the ALBERT-xxlarge variant, for instance, the model would have

approximately 231M x 12 = 2.77B weights*, which is twice as large as ‘xlarge‘ BERT

With regards to regularization in reference it is suggest that reducing the number of
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Figure 4.11: The configurations of the main BERT and Albert analyzed [122]

parameters in BERT, is achieved using a combination of parameter sharing and embedding

size reduction (discussed in the next section), act as a form of regularization. The concepts

of ‘regularization‘ and ‘generalization‘ relate to the common issue in machine learning of

‘over-fitting‘. Over-fitting occurs when a model is allowed to fit too tightly to its training

data, resulting in highly accurate predictions for data the model has seen but an inability

to “generalize” to new, unseen inputs.Over-fitting is often related to overlap between the

classes (illustrated by the overlap between the blue and fuchsia classes). This overlap forces

the model to create a very complex decision boundary to try and separate the data points.

This may work well for the irregular pattern formed by the data points in the drawing, but

it is highly unlikely that all the intricate twists and turns of the overfitted model will align

with an entirely new set of points from the two classes.

A common solution to this problem is to intentionally make the model less accurate.

This is called ‘regularization‘. Regularization produces a simpler and smoother decision

boundary that is significantly more likely to perform better on new data points compared

with the complex decision boundary from the overfitted model. This is the challenge with

large neural networks—they have more expressive power, but this does not necessarily

produce the most reliable model.

In contrast to BERT and other language models trained on the Adam optimizer, AL-

BERT is trained using a relatively new optimization algorithm, Layer-wise Adaptive Mo-

ments (LAMB) [226]. LAMB is designed to handle training with very large minibatch sizes

(i.e. 32,868 ) in order to speed up training. LAMB‘s increased batch size has the impor-

tant benefit of scaling with hardware very efficiently, so unlike Adam and Adam variants,

doubling or quadrupling the hardware can result in a roughly proportional speedup. This

is one of the more notable achievements of BERT, where the BERT model was reported

to be trained in just 76 minutes by scaling up hardware. This is an impressive speedup

68



and allows research teams to iterate on language models much faster. When training a net-

work there are some inherent trade offs between training speed and performance. A lot of

variables are considered (e.g. training time, batch size, learning rate, optimizer details, gen-

eralization, GPU utilization, regularization, etc.) when training, but in discussing LAMB

just a few of these will be discussed in-depth, along with the mechanism of how LAMB

addresses typical problems faced when training with large batch sizes. In general, larger

batch sizes results in better utilized GPUs and lower training time at the expense of model

performance. This is because a larger batch size means fewer training iterations per epoch,

which needs to be compensated for with a larger learning rate. However, although larger

batch sizes have a more accurate estimate of the gradient, a larger learning rate tends to

cause more unstable training, leading to poorer performance overall as the model tends to

get stuck in a local minima of the gradient. Conversely, small learning rate steps with small

batch sizes tends to lead to the best model performance at the tradeoff of training time.

LAMB attempts to fix the unstable training update problem of large batches. The authors

do this by building off an optimization algorithm called Layer-wise Adaptive Rate Scaling

(LARS). LARS is like regular gradient descent, but instead of using a constant or decaying

learning rate, the learning rate is adapted per each layer by something called the trust ratio.

The trust ratio is simply the Euclidean norm (i.e. the square root of the sum of the squares)

of the layer weights over the norm of the gradient update, which at each layer is multiplied

with the learning rate to scale it up or down. Essentially, the trust ratio prevents too large

of a weight update step in the wrong direction or too small of a step in the right direction

at each layer, depending on the gradient.

Question answering (QA) technologies have emerged as effective tools for automated

answering of natural language questions posed by humans using either a pre-structured

database or list of natural language documents. Put another way, QA systems allow users

to ask questions and receive immediate answers using natural language queries, and they

can be thought of as an advanced method of information retrieval (IR). Recent develop-

ment in pre-trained information from huge, unlabelled data has shown promising results in

various downstream tasks. Even when initiated with the same pre-trained parameters, each

downstream task has its own unique fine-tuned model.
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4.7 Acoustics Model Advancements

Natural language is an extremely complex communication form that has become the

central focus for many large-scale technological innovations such as a seamless conversion

of speech into the text. One of the power tool is Automatic speech recognition (ASR) that

directly transcribes recorded speech into text. ASR has exploded over the past decade due

to the success of voice activated devices such as Amazon Echo or Siri. Part of the strong

performance of these personal assistants is based on their ability to transcribe speech even

in challenging conditions such as presence of background noise or unusual speech pattern

(i.e. hesitations). These systems typically rely on free speech input once an established

keyword is audibly spoken. The complexity of this process requires the use of a cloud,

however, there is significant interest in eliminated cloud usage through the development

of embedded systems [94, 125, 132, 164, 220]. Current examples of embedded ASR de-

vices include wearable devices and Internet of Things applications. The primary chal-

lenges of embedded devices are the hard computing power and memory constraints. To

meet these challenges, embedded systems must provide real-time processing with low en-

ergy and memory consumption while still meeting the high accuracy of cloud-based neural

network systems. Several optimization techniques may be applied to achieve this which

include (1) architecture optimization and (2) data quantization and format optimization.

In architecture optimization, the layer quantity and layer sizes are reduced. This process

reduces the neural network size with fewer total parameters to achieve a system that can fit

within memory-constrained systems. This optimization process also improves the real-time

factor. Moving on to data quantization, the weight and activation bit precision are reduced.

Data format optimization, meanwhile, focuses on the replacement of floating-point values

with fixed-point or integer numbers [140]. Thus, data quantization and format optimization

are focused on simplifying operation processes to improve the real-time factor. Since this

is an orthogonal optimization, data quantization and format optimization can be applied

to any selected architecture to reduce model size while improving the real-time factor,

although this may compromise the accuracy of the model.

Pipeline ASR systems involve multiple models–the acoustic model (AM), phonetic

model (PD), and language model (LM)–all of which are created in the training stage. Mean-

while, end-to-end ASR systems rely on only one network to learn each of these represen-

tations. Both types of ASR systems require large volumes of annotated speech data and
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Figure 4.12: Pipeline (top) compared with end-to-end (bottom) ASR models. For pipeline
ASR, feature extraction is required, and different output representations are produced dur-
ing decoding. For end-to-end ASR, raw waveforms are directly transformed into text.
Rescoring can be completed in both cases using an added LM. [81]

text.

Pipeline ASR systems are considered the traditional system where multiple models

work together in a pipeline format (Fig. 4.12). ASR is completed by finding the most

likely phrase, W ∗, using the speech signal probability generated by the chosen sequence,

as shown in Eq. 1 [81]:

W ∗ = argmaxp(W |X) (4.4)

where X is the speech signal and W is the sequence of words. Using Bayes’ rule, this

equation can be transformed into the following equivalent form shown in Eq. 2 [81]:

W ∗ = argmaxp(W |X) = argmax
P (X|W )P (W )

p(X)

= argmaxP (X|W )P (W )

(4.5)

Note that P (X) is independent of the chosen word sequence W . This works to eliminate

the denominator, limiting the equation to the following components: (1) probability com-

putation of X given the corresponding word sequence W : P (X|W ) and (2) probability

computation of the chosen word sequences, P (W ). An acoustic model is capable of deter-

mining the speech signal probability while the calculation of the word sequence probability

requires a LM. A phonetic model is employed to link these two models, as it is composed

of a dictionary that uses a phoneme sequence to define each word within the LM, and these

sequences are then modeled using the acoustic model.

Shifting back to end-to-end systems, there are several possible interpretations of this

type of model (Fig. 4.12). Most often, end-to-end type systems are composed of a sin-
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gle neural network where the end-to-end based speech recognition system receives some

form of raw audio as the input in order to produce a word sequence output representing the

appropriate form of written transcript [213]. Each of the phonetic, acoustic, and language

components are all trained within an individual network [187], so a hand-crafted pronun-

ciation dictionary is no longer required. Some end-to-end networks can process raw audio

signal [52] where feature extraction is integrated into the network [24]. Hand-crafted fea-

tures can be extracted within the previously mentioned step. Training of end-to-end type

systems is completed using graphemes (i.e. characters) [179], word-pieces [47], or entire

words [51]. End-to-end systems provide more output capability over traditional systems

(i.e. direct character output vs probability distributions over phonetic units). End-to-end

models also offer flexibility in the LM where the LM can either be used as an external

add-on or embedded within the network itself. End-to-end networks also offer lexicon-free

approaches, offering out-of vocabulary word handling capability, although this feature can

increase the risk of meaningless or misspelled word output. End-to-end systems do not

use pre-aligned data, as training is performed from scratch to eliminate the occurrence of

incorrect alignments for training targets [87]. An additional generative component (i.e.

Hidden Markov Model (HMM)) can also be introduced in the form of a hybrid HMM-

DNN approach based on a lattice free MMI (LF-MMI) objective function [92] where initial

forced-alignments are not required to initiate training.

Speech signals are not stationary, as its statistics are dependent on the temporal dimen-

sion. As a result, analysis is performed over small time frames to account for the naturally

occurring quasi-stationary nature of the speech signal. Framing represents the first opera-

tion, which consists of signal splitting over short frames (e.g. 25 ms) with some amount

of overlap (e.g. 10 ms). The second operation, windowing, is performed during framing.

Signal convolution is completed via a Hamming [93] or Hanning [152] filter to smooth

border frame discontinuities to avoid frequency artifacts. The smoothing process makes

overlapping essential since it helps to retrieve information that may have been lost at the

frame border. The third pipeline operation is the application of a Fast Fourier Transform

(FFT) to convert the signal from a time to frequency domain, as shown in Eq. 3 [81]:

S(n) = E(n) ∗ h(n) FFT−−→ S(w) = E(w)H(w) (4.6)

where the speech signal passes through a time domain convolution between the base signal,

shown by the pause that occurs during breathing between sentences, and the vocal tract time
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response. The convolution in a given time domain then becomes a multiplication operation

within a given frequency domain. Eq. 4 [81] shows the means by which the logarithm is

used to transform the multiplication operation to a linear summation operation:

S(w) = E(w) ∗H(w)
log−→ log(S(w))

= log(E(w)) + log(H(w))
(4.7)

As shown in Fig. 4.13, though the initial operations are common for most feature types,

fewer or additional features can be processed depending at which stage they are created.

The spectograms represent a common feature type defined as the frequency bin power as a

set time via the application of framing, windowing, and FFT operations.

Figure 4.13: Various speech features obtained for each processing stage. [81]

Mel-filterbanks features, also known as Mel-Frequency Spectral Coefficients (MFSC),

use essentially the same steps employed by spectrograms. They contain an added step

which involves the application of a triangular Mel filter bank [192]. Typically, 40 filters

are used which translate frequencies to a narrower range. Vocal parameters are centered

around the lower frequency ranges, making this lower spectrum section especially crucial.

For the 0-1000 Hz frequency range, the perception is linear and becomes logarithmic for

higher frequencies.

MFCCs [61] are the most frequently used speech recognition features obtained using

an additional step on top of Mel-filterbanks where a discrete cosine transform (DCT) is

applied in the backward transition of the time domain. This step reduces the parameter

dimensionality to achieve their decorrelation. Typically, the first 13 MFCCs are retained

from each frame signal, although more values provide improved accuracy at the expense of

computational complexity.

I-vectors (identity vectors) [62] speaker recognition task-related features, although they

also apply to speech recognition. I-vectors are derived using Joint Factor Analysis [115]

(JFA) and are comprised of the average (mean) components in the Gaussian Mixture Model
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(GMM), which models speaker-specific acoustic features.

Phonemes are the shortest sound units, usually corresponding to the pronunciation of

a single alphabet letter. Since phoneme are highly context-dependent, they are typically

modeled with three states–(1) shift from the previously occurring phoneme, (2) the sta-

tionary, central portion of the current phoneme, and (3) shift to the upcoming phoneme.

This form of modeling is known as triphoneme [133] with each state being referred to as a

senone. Typically, vectors representing senones are modeled using GMMs [232], and tran-

sitions between senomes (i.e. triphonemes) are modeled using HMMs [227]. HMM-GMM

systems are trained by the Baum-Welch algorithm [32] while speech decoding is completed

using the Viterbi algorithm [211].

Speech modeling can be accomplished using HMMs, a finite state automata where

the state sequence is unknown and acoustic vectors that correspond to individual states

are generated using the probability density function. GMMs are typically trained using

an Expectation-Maximization algorithm where the class-belonging probabilities of initial

input data are computed, then model parameters are computed using the current class-

belonging input data probabilities. The algorithm is allowed to iterate until a convergence

at the local maximum for the plausibility function is achieved.

To apply DL to speech recognition, GMMs were replaced with DNNs to model senones

by predicting the senone class [101]. As such, hybrid HMM-DNN models are used to pre-

dict senone classes using an input of several frames of feature vectors. A Time-Delay Neu-

ral Network (TDNN) [212] is a convolutional network that operates within a given time

domain to model temporal dependencies. TDNNs are more easily parallelized compared

with recurrent networks, making them comparable to feed-forward DNNs with respect to

the required amount of training time. In TDNNs, the lower layers are taught a narrow

context, and activations are processed in higher layers to widen the temporal context. An

optional subsampling technique can be used within the TDNN [158] where hidden activa-

tions are computed only at specified (not all) time steps. This mechanism is comparable

with a convolutional operation and also reduces the model size and training time while

allowing gaps within the convolutional filter.

A factored form of TDNN (TDNN-F) is suitable for network layer compression. A

TDNN-F originates from a Single Value Decomposition (SVD) and was introduced as a

superior version of the original TDNN [162] since it assumes training from a random start-
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ing point and learned matricies are decomposed into the product of two shorter factors,

one of which are constrained as semi-orthogonal. This process is achieved using a linear

bottleneck operation where the semiorthogonal matrix, M is defined as MMT = I , or

MTM = I .

An alternative variation of the TDNN approach adds stacked sets of CNN layers (CNN-

TDDs) before implementing the TDNN to complete temporal convolutions of speech fea-

tures, thus reducing the variability of spectral and temporal aspects. These CNN layers use

local connectivity structure, weight sharing, and pooling to remove small variations within

the spectral domain caused by the speaker and surrounding acoustic environment [20].

Some literature studies [16, 38, 116, 234] report improved results using CNN-TDNN com-

pared with TDNN networks at the expense of higher computing power requirements.

Encoder-decoder architecture [28,44,196] is a neural network specializing in sequence-

to-sequence mapping. Typically, recurrent networks are initialized using the encoder and

decoder and are jointly trained. A data sequence is inputted through the encoder to produce

a fixed-length context vector. The decoder is auto-regressive, as it consumes previously

decoded symbols in addition to the context vector to predict the next symbol.

The attention approach is an improvement of the encoder-decoder architecture since it

bypasses the limitations of a fixed-length encoding vector. Reports in the literature show

that the encoder-decoder network performance decreases with increasing input length [48].

Using the attention approach, the input is encoded to form a sequence of different vectors, a

subset of which are chosen during decoding. The decoder will process aligning and decod-

ing operations simultaneously. When the network moves to produce new output symbols,

a group of locations within the original source sequence will be examined where relevant

information is most concentrated. As a result, a context vector is produced for each of the

output symbols. One variation of an attention-based encoder-decoder uses a completely

convolutional encoder composed of time-depth separable (TDS) blocks [95]. The TDS

block is composed to two parts–a 2D convolution layer and two convolutional layers. This

approach provides the advantage of improved generalization while reducing the quantity of

parameters and also maintaining a large-size receptive field.

A typical DNN acoustic model relies on frame-level objective functions for training

using HMM-GMM system-produced alignments. The cross-entropy function (CE) is com-

monly used to provide these alignments and is described in Equation 5 [81]:
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FCE(λ) =
T∑
t=1

I∑
i=1

ŷi(t)logyi(t) (4.8)

where t is iterated over the training set i for set time frame, and ŷi corresponds to each

frame provided using forced-alignment.

Connectionist Temporal Classification (CTC) [86] facilitates network training with-

out the requirement of frame-level alignment for the speech signal transcript and train-

ing dataset transcript. A softmax component is used as the final network layer to de-

termine the probability distribution for all potential output symbols. The output is de-

scribed by a GCTC(θ;T ) transcription graph θ for T time frames. Each node is represented

as a possible output label given by the probability distribution function, Ft(). The path

π = π1, ..., πn ∈ GCTC(θ;T ) is the possible transcription throughout the graph. The

following sequence level objective function is derived from the maximum likelihood and

maximizes the likelihood of a correct symbol [81]:

CTC(θ, T ) = −logadd
T∑
t=1

fπt(x)) (4.9)

where logadd() is an exponential function applied to a logarithmic summation and is an

improved upon version of the original max(). An alternative version of the CTC approach

incorporates a loss function to join the CTC and attention approach [103].

The Lattice-Free Maximum Mutual Information (LF-MMI) objective function is uti-

lized for chain models [163] for sequence-discriminative training. A traditional MMI max-

imizes posterior probability using the following relationship shown in Eq. 7 [81]:

FMMI(λ) =
R∑

r=1

logPλ(Sr|Or)

=
R∑

r=1

log
Pλ(Or|Sr)

k∑
(Or|S)kP (S)k

(4.10)

where Sr represents the accurate transcription for the rth speech file Or and P (s) is the
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LM probability for a sentence s. In Eq. 7 the numerator is the probability of data giving

the accurate word sequence, also known as reference alignment, and the denominator is the

total data probability, provided with the complete list of potential word sequences, equaling

the sum of all potential word sequences as estimated using the entirety of both the AMs

and the LMs. Additionally, the numerator encodes supervision information, specific for

each occurrence while the denominator encodes each potential word sequence, which are

identical for each occurrence.

Prealigned data is not used to train chain models. Although previous attempts to use

CTC to outperform cross-entropy were reportedly unsuccessful, it has been suggested

that some CTC concepts could be applied to the sequence-discriminative LF-MMI cri-

terion [163]. Although both CTC and MMI maximize the conditional log-likelihood of a

correct transcript, the probability in CTC is locally normalized as opposed to the global

normalization of MMI.

Auto Segmentation Criterion (ASG) 9 is a developed improvement to CTC [52] that

introduces dependency between output symbols. This is accomplished using transitional

probabilities between the output symbols. Additional advantages of ASG include a less

complex output graph and un-normalization of node scores, which facilitates the external

LM plug-in. The global normalization of ASG results in low confidence for incorrect

transcriptions. Specifically, the score for a provided word sequence W is shown in Eq.

8 [81]:

ASG(W ) = logadd
T∑
t=1

f t
πt
+ gπt−1 , πt (4.11)

where f() is the probability of a particular output symbol at time step t, and g() is the

transition probability connecting two sequential symbols.

The LM estimates the likelihood of the word sequence W = w1, ..., wn to form a cor-

rect sentence. LMs are useful in the decision-making process when the set of phonemes

from the acoustic model output could form multiple sentence variations. Several LMs exist.

N-gram models use statistical views towards the concept of how words can be combined

together to form realistic sentences. This model assumes that words only depend on a set

number of previously used words, and the likelihood of a word sequence forms a probabil-
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ity set. The probability for any given word is dependent on the proceeding words, as shown

in Eq. 9 [81]:

p(w) = p(w1, w2, ..., wn)

= p(w1) ∗ p(w2|w1) ∗ p(wn|w1, w2, ..., wn−1)
(4.12)

The probability of the occurrence or succession of a word can be computed using large

volumes of text. The most commonly used n-gram models include 2- and 3-gram, which

require a one- or two-word history, respectively. The probability for a word pair using a

2-gram model can be shown using Eq. 10 [81]:

p(wj|wi) =
count(wi, wj)∑
count(wi, w)

(4.13)

where the probability of an occurrence of the word pair (wi, wj is provided by the

quantity of occurrences for the word wi proceeding the word wj . This is divided by the

total counts of occurrences for the specific word wi followed by another word.

RNNs, meanwhile, are capable of learning from all previously used words. These can

be as simple as a single input layer, hidden layer, and output layer [141]. RNNs can be

problematic to train using a backpropagation technique as a result of vanishing gradients

employed within the model. LSTMs provide a potential solution to this by using an alter-

native memory cell. Literature reports present a LSTM-based method consisting of a single

input layer and two separate hidden layers (one projection layer and one recurrent layer)

using the LSTM cells [195].

Another new convolutional network type relies on gated linear units (GLU) and outper-

forms LSTMs for LM in both accuracy and implementation since it is more easily paral-

lelized with less complexity [60]. In this convolutional network, a convolution operation is

performed over the input to remove temporal dependencies.

The Transformer-XL [56] network learns dependencies without fixed-length context

constraints. This network is capable of capturing longer dependencies compared with sim-

ple Transformers or RNNs and achieves improved performance for both long and short
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sequences with a faster inference time.

For shallow fusion [90,113], the AM attempts one potential phone set for each time step

scored using the weighted score sum provided using the AM and LM. The point at which

the shallow fusion relationship occurs is referred to as an inference time and is shown in

Eq. 11 [81]:

ŷ = argmaxlog(y|x) + λPLM(y) (4.14)

where the initial term represents the AM probability, and the following term is the LM

probability.

Deep fusion [90] relies on concatenation of both the AM and LM hidden states adjacent

to one another. The models are separately trained, and fusion occurs via gating mechanism.

The fact that both the AM and LM are trained separately is a disadvantage, especially

for encoder-decoder models. Also, this method does not work well if the AMs and LMs

are trained using separate domain corpora, where the decoder has a tendency to follow

whatever style has been learned by the AM. Cold fusion [191] is a derivation of deep fusion

where the end-to-end AM is trained from scratch using a pre-trained LM. Cold fusion relies

on separate gates for each individual hidden node in the LM, letting the decoder choose

what LM information provides the best fit for a set time step. It has been reported that a

cold fusion decoder outperforms end-to-end attention-based systems [191]. Reports show

other novel LM integration approaches where a pretrained LM represents the lower decoder

layer in an attention-based encoder-decoder system to provide tighter word embeddings to

the context [201].

ASR output takes a lattice form, or a graph G(N,A), and N represents nodes while A

represents arches. Lattice rescoring [142, 217] is the replacement of existing lattice prob-

abilities with those provided by using a more efficient LM. Lattice rescoring is performed

for the n-best defined hypotheses produced after a beam search. Meanwhile, shallow fusion

is performed using log-linear interpolation of the AM and LM score for individual beam

search time steps.

There a several popular ASR systems, along the most popular of which are Kaldi’s

pure-TDNN [4], Kaldi’s CNN-TDNN [3], DeepSpeech2 implementation from PaddlePad-
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dle [10], RETURNN by RWTH [11], Facebook CNN-ASG [13], Facebook TDS-S2S [14],

Jasper by Nvidia [8], and QuartzNet by Nvidia [9]. The most commonplace ASR tasks

and corpora are shown in Fig. 4.14. Of the ASR frameworks, all provide adapted ASR

systems for LibriSpeech, the most popular free English dataset [155], although only three

have adapted systems compatible with WSJ [157].

Figure 4.14: Comparison of popular speech data sets for ASR applications. This table
compares speech type and data set size in terms of speech hours and speaker number.
Availability is shown for popular ASR frameworks, Kaldi (K), PaddlePaddle DeepSpeech
(P), Wav2Letter (W), RWTH Returnn (R), and Nvidia (N). [50, 81, 84, 155, 157, 176]

The TDNN Kaldi chain model is a lightweight, multicomponent ASR system using a

TDNN applicable to AM and a HMM to perform sequence modeling. This hybrid system is

comprised of a TDNN-based AM, both a PM and LM. More complex LMs can be incorpo-

rated for rescoring to improve the initial transcription. The feature details are summarized

in Figure 4.15. Specifically, the left side of Fig. 4.15 shows the network input features, a

network the figure center shows a network overview, and the bottom left shows the output

blocks. Note that the literature shows that the network performance is improved if there are

two output blocks [17].

Kaldi’s CNN-TDNN is an extension of the Kaldi chain model TDNN that processes

input features using 1D convolutional layers. This model can also be implemented within

the Kaldi toolkit for LibriSpeech task approaches. Figure 4.15 shows the details of this

where the organization and feature extraction procedure can be viewed at the center of the

left-hand column and the complete CNN-TDNN network can been viewed in the center

column.

DeepSpeech2 implementation from PaddlePaddle is an end-to-end bi-directional RNN

using convolutional layers to process speech features. This architecture is designed to fulfill

LibriSpeech ASR tasks. Figure 4.16 illustrates the details of this single neural network end-

to-end system where audio features are processed to provide word output.

The RETURNN from RWTH model is comprised of an attention-based encoder-decoder
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Figure 4.15: Architectures and feature types of Kaldi-based ASR systems. Feature type
1 (upper left) is implemented within TDNN models (center) while type 2 features (middle
left) are implemented within CNN-TDNN models (right). Output blocks (bottom left)
using cross-entropy functions along with chain loss functions are utilized in both network
types. [81]

ASR to produce word part output. This end-to-end system [230] is composed of recurrent

layers. The network receives hand-crafted feature input with subwork part outputs created

using byte-pair-encoding (BPE) [186]. A detailed summary of this system is shown in the

left-hand side of Fig. 4.16.

Facebook CNN-ASG is a fully convolutional end-to-end network utilizing a CTC-based

criteria ASG that can output characters. The fully convolutional nature of this system is due
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Figure 4.16: RWTH RETURNN model (left) and PaddlePaddle DeepSpeech2 model
(right). [81]

to the 17 1D time-convolution blocks that are used, each of which is characterized using a

weight normalization operation [180], in addition to the convolution itself and application

of the dropout technique. The categorization of this system can depend on several factors.

The first is whether the input is raw audio [229], a power spectra, MFCCs, or even Mel-

filterbanks. Second is whether the system utilizes a lexicon as opposed to operating lexicon-

free [19, 128] where the lexicon behaves as a phonetic model consisting of mapping words

as a sequence of acoustic unit tokens. Next is how the system outputs scores over acoustic

units (e.g. phonemes, graphemes, word pieces, etc.). The final factor is the system output,
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which can be represented by characters or plugged-in via shallow fusion [60]. The system

details can bee seen in the left-hand side of Fig. 4.17.

Figure 4.17: Facebook Wav2Letter networks comprised of completey convolutional ar-
chitecture along with an ASG loss function (left) and encoder-decoder with TDS blocks
(right). [81]

The end-to-end deep neural network system offered by Jasper from Nvidia is based on

a time-delayed convolutional network interwoven with completely connected layers and is

also characterized by residual connections. Jasper from Nvidia is comprised of a single

neural network and does not require a phonetic model. As such, the framework can be

optionally integrated with probabilistic or even Transformer-XL neural network LMs [56].

A newly developed optimizer, NovoGrad [83], can also be implemented within this net-

work. Although comparable to Adam, NovoGrad is designed to compute second moments
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for each layer as opposed to per weight, improving network stability and reducing memory

consumption by up to half. The details of this system can be viewed in Figure 4.18 (left).

Figure 4.18: Nvidia time convolutional networks: Jasper, which contains dense residual
blocks (left), and QuartzNet, which contains time-channel separable residual blocks (right).
[81]

QuartzNet from Nvidia [117] is a Jasper-derived end-to-end deep neural network that

stems from 1D time-channel separated convolutions. This system is a more efficient ver-

sion of Jasper regarding the quantity of operations and parameters. Similar to Jasper, the

QuartzNet system is also a single neural network using preprocessed feature input with

character output along with support for probababilistic or neural network LM integration.

The system details are shown in Fig. 4.18 to the right side.

Of the previously mentioned ASR systems, all are end-to-end systems with the excep-

tion of the two Kaldi-based systems, which are multi-component systems. For the multi-

component systems, the AM, phonetic dictionary, and LM are different components that
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Figure 4.19: Comparison of ASR Systems. Systems are compared by (i) type–hybrid,
HMM-based, and end-to-end type neural network, (ii) component types–multi-component
and single neural networks containing additional or optional LM, (iii) speech features, (iv)
neural network architecture, which also includes function loss, (v) output type and size, and
(vi) model complexity regarding size of the model, quantity of activations, and operation
count required to process a single speech frame. Systems are described with respect to
complexity, architecture, and hardware requirements. [81]

function as a single system. For the other mentioned systems, only a single neural network

is used towards these three components. All mentioned models rely on hand-crafted fea-

tures for input, although only the Kaldi system uses two components, MFCCs and iVectors,

whereas the other uses only one. The Kaldi systems integrate cross-entropy or even chain

loss objective functions derived from the LF-MMI cost function whereas the single neural

network systems rely on more complex architecture in the form of sequence-to-sequence

attention, CTC, and/or ASG. These act as loss functions and HMM to align sequences. The

hybrid-approach neural network systems provide posterior probabilities of phonetic units

output while other networks provide character or word part outputs. An overview of these

characteristics is provided in Figure 4.19.

To determine which models most suitable for embedded system applications, they were

used for a variety of operations–(1) source code analysis, (2) inspection of the log files at

the inference time, and (3) running the inference for each individual step in debugger mode.

This information was then used to determine the complexity corresponding to each indi-

vidual layer. The formulas used to complete these calculations are summarized in Figure

4.20. Note that the quantity of gates is dependent on the recurrent cell type–1 for RNN, 3

in the case of GRU, and 4 for a LSTM. Also, the fourth component is set equal to either 1
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or 2 depending on if the layer displays unidirectionality or bidirectionality.

Figure 4.20: Formulas used to determine network complexity. [81]

There is an extremely large variation in the model size from 18M parameters in the

case of Kaldi CNN-TNN and Nvidia QuartzNet all the way to 333M parameters for Nvidia

Jasper. Of the previously mentioned models, Nvidia Jasper is classified as the most com-

plex with the highest parameter count and quantity of operations required to process a

single frame of speech. After Nvidia Jasper comes the recurrent encoder-decoder model

from RWTCH and convolutional CNN-ASG model by Facebook. Although the RWTH

and CNN-ASG models are similar in size (187M and 208M, respectively), the RWTH

model requires substantially larger memory for storage of the 38M required activations

per frame whereas the CNN-ASG model requires higher processing power for the 22M

required operations per frame. Although QuartzNet uses a comparatively small amount of

parameters, it uses a medium load with respect to memory due to its substantial activation

number. QuartzNet also uses a high amount of operations, although they are lower than

Nvidia Jasper and Facebook CNN-ASG. Kaldi’s models are the lightest with only 20M

parameters and fastest with 40M-60M operations per speech frame. Facebook TDS-S2S

performs similarly to the Kaldi models; the somewhat larger model results in higher mem-

ory requirements although the required processing power per speech frame is reduced by

3-4x.

Figure 4.21: Comparison of ASR systems regarding performance where performance is
measured by rate of word error. This evaluation is performed using two LibriSpeech
subsets–test-clean and test-other. For frameworks that allow, two scenarios are used for
each evaluation–with and without an external LM. [3, 4, 8–11, 13, 14, 81]

To compare the model performance, the word error rate (WER, [%]) is compared at

each implemented system level. The WER is determined as the total count of transcription
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errors (i.e. deletions, insertions, and substitutions) regarding the total quantity of words

within the groundtruth. The error rates for each model are summarized in Figure 4.21. For

more complex models, high-quality transcriptions can be achieved without the use of an

additional LM. Results are summarized in Fig. 4.21 for both end-to-end neural networks

excluding an additional LM for rescoring (left) and full ASR systems used in conjunc-

tion with an external LM (probabilistic non-pruned 4-gram (fglarge) [18]) (right). The

evaluation was completed using two LibriSpeech test datasets. The first is test-clean, com-

posed of clean speech. The second is test-other, composed of speech recorded using more

challenging (e.g. nosier background) sound conditions. The details of these datasets are

summarized in 4.22.

Examining the comparison of performance, the complex models (i.e. RWTH RE-

TURNN and Nvidia Jasper) provide similar results despite the use of an external LM.

Less complex models with this ability (i.e. Facebook TDS-S2S and PaddlePaddle Deep-

Speech2), however, exhibit poor performance in this scenario. Overall, the best results are

produced using Nvidia Quartznet, although these are closely followed by Nvidia Jasper and

the Kaldi systems. These are followed by the Facebook systems and RWTH RETURNN,

and PaddlePaddle DeepSpeech2 produces the worst overall performance.

Figure 4.22: Librispeech corpus–various training and evaluation subsets, along with their
corresponding size. [81]

The memory load and throughput hardware system requirements of each model are

summarized in Figure 4.23. Examining the comparison, RWTH RETURNN, Nvidia Jasper,

Nvidia QuartzNet, and Facebook CNN-ASG are all substantial in their memory load re-

quirements ( 14x-235x the least intensive system, Kaldi CNN-TDNN). Meanwhile, the

Kaldi-based systems, PaddlePaddle DeepSpeech2, and Facebook TDS-S2S have similar

low memory requirements ( 100-200MB). Figure 4.24 (left) illustrates the compromise

between ASR performance and memory requirements. Thus, while Nvidia QuartzNet

needs large memory capacity, it lies within the Pareto front owing to the reduced WER.

The Kaldi-based systems also lie in the Pareto front since they dominate either perfor-

mance (i.e. CNN-TDNN) or memory requirements (i.e. TDNN). Examining the required

computational power, Nvidia Jasper and Facebook CNN-ASG require too much power to
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Figure 4.23: ASR performance compared with hardware requirement trade-off. Perfor-
mance is shown as the WER obtained using LibriSpeech test-clean dataset. Hardware
requirements are shown with respect to memory load (MB) and minimum throughput
(GOPS). Note: regarding the memory load, only the required amount to load the neural
mode and store all activations for 1 second of speech processing are considered. More
memory may be required for other components. Regarding throughput, only the operations
needed to pass speech through the network were considered.

be implemented in embedded systems. The compromise between ASR performance and

throughput requirements is shown in Figure 4.24 (right), where Nvidia Quartz Net, Face-

book TDS-S2S, and Kaldi TDNN are on the Pareto front. As shown in 4.23, Kaldi TDNN

is the best candidate for embedded systems when considering performance and hardware

requirements.

Figure 4.24: ASR performance compromises between memory requirements (left) and
throughput requirements (right). [81]

4.8 Introduction to Bayesian Inference

The main aim of the thesis it to evaluate a feasible response for the QA model. In order

to achieve that we have used the bayesian inference which is one of the most important

statistical inference recently. So we first explore the basic concept of bayes theorem leading

to its application in our thesis.
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Bayesian statistics is a data analysis approach that uses Bayes’ theorem to update

available parameter information within a statistical model with information from observed

data [205]. Conceptualized in 1763, Bayes’ theorem on inverse probability was first in-

troduced in 1825 where the probability of future events were calculated using past event

data [205]. In Bayesian statistics, all statistical model parameters, both observed and unob-

served, are treated with a joint probability distribution known as the prior and data distribu-

tions [205]. Building off this basic concept, Bayesian data analysis follows three primary

steps–(1)parameter knowledge capture using the prior distribution, (2) determination of the

likelihood function, and (3) combination of the prior distribution and likelihood function to

obtain the posterior distribution [205].

The prior distribution is determined prior to data collection and can take different

forms (e.g., Poisson, normal, uniform, etc.) [205]. Additionally, the prior distribution

may have different informative levels ranging from total uncertainty to high relative cer-

tainty [205]. Prior distributions are organized into one of three subjective categories based

on the level of uncertainty–informative, weakly informative, or diffuse [205]. Hyperpa-

rameters are the individual parameters controlling the degree of uncertainty in the prior

distribution [205]. Prior distributions are constructed using prior elicitation [205]. Meth-

ods for this include consulting an expert to provide the prior distribution hyperparameter

values [105, 111, 151, 210], using MATCH, a tool for generic expert elicitation [145], re-

ferring to previous publications or meta-analyses [108, 174]. These methods can also be

combined or varied as needed [206]. Some reported prior elicitation methods involve the

use of data-based prior distributions [205] where hyperparameters are derived using maxi-

mum likelihood [35, 42, 43, 207] or sample statistic methods [58, 173, 215]. However, this

type of procedure leads to double-dipping [58] since the data set used to determine the prior

distribution is also used to calculate the posterior and is not recommended [205]. Alterna-

tives include hierarchical modeling strategies where the prior distribution is dependent on

data-driven hyperparameter values [205].

Informative prior distributions are those with high certainty regarding the estimated

model parameters [205]. An informative prior distribution is useful when a parameter or

relationship between parameters has a known restriction range [205]. However, informative

prior distributions can also produce posteriors that do not correctly reflect the population

model parameter [205]. Weakly informative prior distributions are less defined and have a

hyperparameter with larger variances compared with informative prior distributions [205].
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As a result, weakly informative prior distributions have smaller impacts on the posterior,

allowing the posterior to be more strongly influenced by data observations expressed in the

likelihood [205]. This type of distribution is useful for situations where there is a desired

amount of uncertainty about a parameter despite there being some assumed information

[205]. Finally, diffuse prior distributions have little to no certainty about the estimated

model parameters. Diffuse prior distributions represent a flat density without parameter

knowledge [205]. This type of distribution is useful for situations with no certainty of the

parameter values, allowing the data to determine the posterior. Diffuse prior distributions

can also be implemented as a placeholder or preliminary data collection technique before

analyses with other more informative priors are used [205].

While it is important to choose the correct informative level of the prior distribution,

mis-specified models or biased data can also prevent the prior distribution from conform-

ing with the likelihood [205]. The likelihood sensitivity analysis can be assessed to check

this. Prior predictive checking is used to check the accuracy of the prior distribution be-

fore generating any data [205]. A prior predictive distribution can be implemented to show

the distribution of the possible samples when the model is true [205]. The more accu-

rate the prior distribution, the more similar the prior predictive distribution will be to the

data-generating distribution [205]. In prior predictive checking, the observed data or ob-

served data statistics are compared with the prior predictive distribution or prior predictive

distribution statistics to measure their compatibility [205]. Kernel density estimation is a

non-parametric smoothing approach used to calculate the probability density function to

compare original data with the predictive distribution data [205]. The compatibility of the

prior distribution can also be measured using the prior predictive p-value which describes

where the observed data characteristics lie within the tails of the reference prior predictive

distribution [205]. In the case where two prior distributions are being considered for a

model, the Bayes factor is used to compare them [205].

The likelihood quantifies how large of a role the observed data plays in determining

possible values for unknown parameters [205]. Bayesian inference refers to unknown pa-

rameters as random variables to form probability statements about the unknown param-

eters [205]. Observed data is considered fixed while parameter values are variables. As

such, the likelihood is a function of given parameters, θ, for fixed data y, meaning that

the likelihood function summarizes a statistical model stochastically generating the data, a

range of possible given parameters (/theta), and the fixed observed data (y) [205].
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Once the prior distribution and likelihood are defined, data can be collected, and, finally,

the posterior distribution obtained. The model can be fit to obtain the posterior distribution

using a variety of methods. To do this, the model parameters are assigned probabilities

based on their associated uncertainties [205]. Bayesian statistics aims to estimate the pos-

terior distribution of all the model parameters [205]. As a result, the posterior distribution

equation is generally known only to a known amount of the proportionality, a set constant

that cannot be calculated [205]. Markov chain Monte Carlo methods can be used to indi-

rectly infer the posterior distribution [205].

After the posterior distribution has been determined, the model can be used to produce

simulated data. This is only valid if the model can accurately predict data trends. Poste-

rior predictive checking is used to determine the accuracy of simulated data by comparing

the estimated kernel density of the observed and simulated data sets [205]. Any form of

parameter-dependent statistics or discrepancies can be used to perform posterior predictive

checking, and the sensitivity of the test can be varied to suit the user’s goal.

Bayesian statistics can be applied to countless applications including social and behav-

ioral sciences, ecology, genetics, reproducibility and data deposition, and limitations and

optimizations [205]. Of these applications, Bayesian inference has been especially helpful

with respect to active learning, a type of ML where model training begins with a small

portion of the labeled data [144]. The primary objective of active learning tasks is to reach

a desired accuracy level while reducing labeling costs by making the process of asking for

labeled data more efficient [144]. In other words, active learning seeks to improve accuracy

while reducing the required amount of labeled data [144]. Most DL solutions, however, are

data hungry. This is in contradiction to the small data trends in active learning. Bayesian

inference offers a potential answer to this problem.

Non-parametric models like Bayesian statistics-based methods can be applied to model

all data types at the cost of higher complexity [144]. As such, DL an effective ML tool, es-

pecially for active learning tasks like question answering and NLP problems [144]. Many

novel question answering applications have been recently reported that improve perfor-

mance and effective learning while lowering computing cost and annotation budget [82,

156, 189].

DL methods generally involve the training of convolutional neural networks (CNNs)

[144]. Bayesian CNNs are able to learn using only small quantities of data while allow-
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ing for representation of model uncertainty with the use of an acquisition function [144].

These qualities make Bayesian CNNs an excellent tool for active learning tasks on big data

sets containing high dimensional samples [144]. Bayesian inference-based methods can be

used to introduce a probabilistic framework to DL and ML tasks. Bayesian active learn-

ing methods offer uncertainty representation along with improved generalization on small

quantities of data [144].

Gidiotis and Tsoumakas reported the development of a Bayesian Active Summarization

(BAS) [82]. The BAS approach applies active learning to abstract text summarization with

the aim to mitigate data dependence of the summarization models [82]. BAS combines DL

with Monte Carlo dropout to measure the summarization uncertainty. This is then used to

select samples to be annotated [82]. To maximize gains on a limited data annotation budget,

annotating and training are iteratively alternated [82]. BAS has improved data efficiency

over random selection with higher overall performance for small annotation budgets [82].

Using fewer than 150 training samples, the BAS approach was able to achieve 95% of the

performance of the PEGASUS summarization model trained using the full XSum dataset

[82]. This suggests implementation of Bayesian inference in NLP can produce more robust

learning with reduced computational cost.

Simpson, Gao, and Guervych also implemented a Bayesian approach to text rankings

called Bayesian optimisation (BO) [189]. BO acquisition functions present a new potential

alternative to the standard uncertainty-focused acquisition functions [189]. BO focuses on

maximizing a function while also minimizing the number of queries [189]. In this instance,

Simpson et. al. applied BO to a ranking function used to map text documents. They

found the BO active learning strategy minimized the number of labels required to identify

the best candidate over uncertainty-based methods that focus on learning the complete

ranking function [189]. BO aims to identify the best candidate by focusing on strong

candidates and disregarding lower quality candidates as opposed to ranking them precisely.

This is accomplished by combining pairwise feedback with Gaussian process preference

learning (GPPL) [189]. Simpson et. al. reported high accuracy with minimal feedback

with improved model matching to human-produced model summaries. As such, BO may

be a superior method for language-based tasks like question answering, summarization,

and translation.

Bayesian inference has also been applied to passage scoring for open-domain question

answering (QA) by Paranjpe, Ramakrishnan, and Srinivasan in the form of a Bayesian
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belief network (BBN) [156]. A Bayesian Network is comprised of a directed acyclic graph

(DAG) which encompasses a set of conditions about variables in X along with a set of local

probability distributions for each variable [156]. Paranjpe et. al. created their BBN using a

lexical network where semi-supervised learning was used to simultaneously train the model

while associating text tokens to synsets in the WordNet [156]. The inference algorithm was

separated from the knowledge base design to ensure the system was extensible and could

be trained using a corpus [156]. Once again, Bayesian inference produced strong results

using minimal input (i.e., a small corpus). However, one problem with this model was

computation and memory costs. In this study, Bayesian inferencing took 0.03 seconds per

passage on average, and the memory requirement was up to 30 MB [156].

Gal and Ghahramani refined the general active learning framework by using the kernels

of a CNN to behave as the training engine for the active learning framework [78]. By run-

ning the Bayesian inference through an approximate inference within the Bayesian CNN,

Gal and Ghahramani reported the solution to be more computationally tractable [78]. They

also empirically showed dropout as a Bayesian approximation as a means of introducing

uncertainty within DL methods [78]. Note that dropout was used during training by apply-

ing dropout before each weight layer along with during testing as a means to sample from

the approximate posterior [78]. Compared with other active learning models including

those using RBF, the Bayesian CNN showed superior performance.

Jedoui et. al. increased the uncertainty level in Bayesian-based models by adding the

assumption that the output space is not mutually exclusive [109]. Having multiple outputs

for one input would be an example of this scenario [144]. This study reported that classical

uncertainty sampling does not outperform random sampling for question answering tasks.

Instead, combining Bayesian uncertainty with semantically structured embedding was used

[144]. Jedoui et. al. suggested that dropout can be represented by a variational Bayesian

approximation [109]. The dropout then becomes a mixture of two Gaussian distributions

with small variances where the mean of one of the distributions is equal to zero [144].

Uncertainty within the weights results in prediction uncertainty that could be measured by

the approximate posterior via Monte Carlo integration [109].

Pinsler et. al. reported another successful application of Bayesian inference for DL

applications [161]. DL was investigated for large data sets and networks for active learning

tasks where systematic labeling requests are required for batch active learning tasks [161].

A model focused on efficiently scaled active learning was proposed where the data pos-
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terior was well estimated [144]. Different active learning models were considered using

various acquisition functions were tested for the efficient batch selection task with sparse

subset approximations [144]. Of the tested models, Bayesian active learning produced the

strongest performance.

A Bayesian prior has been applied to the network weights within a CNN to prevent

over-fitting in CNNs in the form of a Bernoulli approximate variational inference method

[79]. This method allows CNNs to learn from small data sets while preventing over-fitting

or increase in computational complexity [79]. This is an important development towards

adoption of Bayesian statistics in active learning applications. Gal et. al. compared several

models and different acquisition functions for NLP tasks [79]. Of the tested models, deep

Bayesian active learning showed the best performance.

Overall, Bayesian inference has been established as a promising new method for NLP

and ML applications, especially regarding question answering. Bayesian inference in espe-

cially unique in that it focuses the bulk of the computing power on identifying the strongest

candidates, improving the model effectiveness in cases where a correct answer indicates

superior model performance.
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Chapter 5: PROPOSED QA METHODOLGY

5.1 Related Pipelines

ML based reading compression tasks associated with question answering has shown

a massive progress in recent times. The most important reason for this is the availability

of standard evaluation frameworks such as QACNN/DailyMail [99], SQuAD [168], and

Natural Questions [119]. Additionally, recent progress of DL architecture like attention-

based and memory augmented neural networks have been a groundbreaking achievement

so far [29]. Some QA models like BERT have shown very promising performance in the

chatbot domain. However, since SQuAD is reading comprehension focused, QA always

needs a context to respond with an answer. This has restricted its use in the commercial

chatbot market.

However, due to its great performance, it is very important to get the leverage of

BERT-based SQuAD. To be able to achieve an end-to-end chatbot model, there are var-

ious pipelines in the market allowing BERT-based model integration for commercial chat-

bot development. The simple and effective pipeline for document or context retrieval is

Term Frequency-Inverse Document Frequency (TF-IDF) [143]. There exist many complex

methods, but the simplest, fastest, and most popular information retrieval techniques are

frequency-based methods. Such methods are carried out using the most popular approach

of Bag-of-Words (BOW). BOW is a representation of text or document by counting the

occurrences of words in the given text. The fact that BOW does not account for word order

is considered its main disadvantage. This frequency of the word in a particular context can

be considered as the feature to make a comparison between documents as well as to train

other downstream ML classifier models. Such approach of representing text or document

is language independent and is applicable to any type of task with no prior information.

However, due to various word variants, frequency counts suffers. Hence, to make it more

relevant, several techniques such as tokenization, stemming, or lemmatization can be used.

Tokenization involves the splitting of a text or a sentence into individual words, and each

split word behaves as a unique token. Assigning each token a unique id helps to make the

feature simple and general, which eventually is fed to ML models. Meanwhile, stemming

involves the shortening of a word into its root word. For example, stemming shortens the
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word “consult”, “consulting”, “consultant”, “consultants”, and “consultantive” to its root

word “consult”. Lemmatization is a similar technique which is a advanced form of stem-

ming that basically understands the meaning of the word and its context. Its main aim is

to shorten words to the base form of word that make sense as a word alone, unlike stem-

ming. For example, lemmatization changes “better” and “best” to its simple form, “good”.

Using these preprocessing techniques, TF-IDF assigns weight, increasing the importance

of tokens for a specific document. In a document, word frequencies are matched with the

ratio of documents in which the words appear, thereby helping to define the basic terms of

the document and resulting in a better frequency representation of a text.

Table QA is another a modern platform and interface that will help even non-technology-

savvy users to obtain information from transparent datasets without requiring advanced

data processing software and without needing to completely understand the nature of the

dataset [203]. The pipeline demonstrates the response from tabular data to natural language

questions and explores the relevant device setup and model training aspects. The table QA

pipeline consists of the following operations:

Learning Table Lookups: The table QA for answering questions from tables is in-

spired by the End-To-End Memory Network design [193], which is used to turn natural-

language questions into table lookups. The Memory Network is a recurrent neural network

(RNN) equipped to integrate continuous representations of an input table and a query to

predict the correct response. It is comprised of a sequence of memory layers that go over

the input table content many times and perform reasoning in multiple steps. The data sam-

ples used for training and testing are fed in batches. Any of the data samples consists of

the input table, a question, and the correct answer that corresponds to one of the input table

cells.

The input tables, questions and responses are inserted into a vector space using a bag-

of-words model, which neglects the word ordering. This method is productive to operate

on training results, as the terminology for column headers and cell values are disjointed. In

the future work, there can be an added benefit of converting to the positional encoding on

the real-world data. The output layer produces the expected answer to the input query and

is applied as a softmax function in the size of the vocabulary (i.e. it outputs the likelihood

distribution over all possible responses, which may be all of the table cells). The network

is trained using stochastic gradient descent with linear start to prevent the local minima.

The objective function involves minimizing the cross-entropy loss between the expected
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response and the true answer within the training set.

Query Disambiguation: The users may refer to columns with terms that vary from

the labels used in the table headings, so a fastText model pretrained on Wikipedia is em-

ployed to compute similarities between the out-of-vocabulary (OOV) words from the user

query and the words in our vocabulary (i.e. to coordinate or ground the query in the local

representation). The resemblance is calculated as a cosine-similarity between the word vec-

tors embedded using the pretrained fastText model. The fastText provides continuous word

representation, which represents semantic similarity using both the word co-occurrence

statistics and the sub-word-based similarity through the character n-grams. For each of the

OOV terms, the query disambiguation module chooses the most similar word from the vo-

cabulary at query time and uses its embedding instead. In table QA pipeline, this technique

is especially useful in aligning the paraphrases of the column headings. The similarity

threshold is empirically discovered and provides optimum precision/recall trade-off on the

results.

Implementation: The implementation shows the power of the pipeline trained to

answer questions on semi-structured data. The TableQA prototype is introduced as a Flask

web framework and is publicly available. The user interface allows one to enter a custom

query for a given sample table. The attention weights are visualized by highlighting the

related cells in the input table, which gives a perspective on the data patterns learned by the

neural network. There is also an additional table, which provides more information about

the underlying prediction process. It includes the triple-wise representation of the input

table as processed by the neural network, and the attention weights for each of the memory

layers separately.

CONQUEST pipeline focuses on the design processes of the NLP engine, query classi-

fication method construction, and description of the machine interaction flow [27]. CON-

QUEST utilizes a machine learning-based mechanism to classify feedback questions to

established models derived from Business Information Graphs (EKGs). The confirmation

dialog is used to address inconclusive classifications and request mandatory missed crite-

ria. Additionally, CONQUEST evolves along with the question clarification process: these

cases identify question trends used as new preparation examples.

The CONQUEST system is composed of both CONQUEST Trainer and CONQUEST

Chatbot modules. The Trainer is able to train necessary Template Based Question Answer-
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ing (TBIQA) components in the created chatbot. The second is responsible for running the

chatbot and using the developed components to have a TBIQA service. The feedback pro-

vided by the programmer to the conquest system is comprised of a set of template questions

that can be answered using the method in addition to the EKG (ontology + instances) being

examined. The domain ontology provides the instance framework, enabling the description

of the occurrence or attribute value form depending upon the situational context (properties

and connected associations) (properties and linked relationships). A template query whose

mechanism provides answering capabilities is called Question Answering Item (QAI).

CONQUEST Trainer: The CONQUEST Trainer module is only implemented offline

using the developer. First, two separate indices are constructed during Index Construction–

(1) a class index and (2) a property index. Each index contains details regarding the domain

ontology schema being reviewed and are of essential to the following implementation steps.

The QAIs processing has second training phase divided into three steps:

• Consistency check

• Query pattern parsing and semantic interpretation

• Vectorial representation (QV) construction for a Question pattern (QP)

The third stage involves training the Named Entity Recognition (NER) module. The

NER module is responsible for recognizing potential text in a sentence with Context Vec-

tor (CV) values. These texts are used to determine the CV for a given input query. NER

allows for possible CV values to be defined immediately from the query, removing the

need to separately request each CV during the conversation time. More precisely, in CON-

QUEST, NER is equipped to understand potential literal CV values. CONQUEST uses a

basic regular expression mechanism to define numeric type entities. CONQUEST reuses

the dateparser library to identify data type entities. For string-type literals, CONQUEST

classifies a text for its probable owner pair. This is completed using Apache Solr index

querying. For instance, if a person’s name is queried, all possible instances of the name

attribute are retrieved.

The fourth stage is training the question classifier. CONQUEST completes a seman-

tic enhancement step for the input features using CV as a portion of the classifier input

(Semantic Features). For the classifier training, the QVs collection generated during QAI
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processing is used for the training dataset, using the corresponding QAI for each QV as the

classifier output label. The default ML model implemented by CONQUEST is the Gaus-

sian Naive Bayes (GaussianNB) which, when combined with the utilization of semantic

features, showed superior model performance in terms of ranking hit rates along with re-

quired learning time. The final state is to save the trained artifacts such as Ontology index,

the QA items, NLP model, and the classification model.

In addition to these above-mentioned QA pipelines, the development of open-source

research resources has been a strong culture in the NLP and ML communities. The BERT

original source code [64] and the groundbreaking tensor2tensor library [208], both from

Google Research, inspired the structure of Transformers. AllenNLP first reported the idea

to provide simple caching for pretrained models [80]. Transformers build on these ele-

ments by adding additional user-facing features such as quick model installation, caching,

and fine-tuning, as well as a smooth transition to development. Transformers retain some

compatibility with available libraries, most notably a tool for inference using Marian Neu-

ral Machine Translation (NMT) and Google’s BERT models. Spacy, AllenNLP, flair, and

Stanza are examples of general-purpose, open-source libraries that concentrate primarily

on ML for various NLP tasks [22, 80, 102, 165]. Transformers are close to these libraries

in terms of features. Transformers are connected to common model hubs such as Torch

Hub and TensorFlow Hub since it provides a NLP model hub. These model hubs collect

framework-specific model parameters for easy application. Transformers, in comparison to

these hubs, is domain-specific, allowing the system to automatically help model analysis,

use, implementation, benchmarking, and easy replicability.

Transformers are designed to operate in the same way as a typical NLP ML algorithm

pipeline; a transformer processes data, applies a model, and then makes predictions. Al-

though the library contains resources to help training and development, we will focus on

the primary modeling requirements in this technical report. A transformer located at the

library center includes carefully checked applications of Transformer architecture variants

commonly used for NLP. There are numerous implemented architectures provided by the

Huggingface libraries. They are:

• Language Modeling

• Sequence Classification

• Question Answering
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• Token Classification

• Multiple Choice

• Masked LM

• Conditional Generation

Although multiple transformers employ the same multi-headed attention core, they still

possess significant differences such as positional representation, masking, padding and

sequence-to-sequence design. Various models are also being developed to target a vari-

ety of NLP applications such as comprehension, generation, and conditional generation, as

well as specialized tools such as quick inference and multilingual applications.

Different architectures use the same API wherever possible, allowing users to quickly

switch between models. A collection of Auto classes provides a single API that allows for

lightning-fast switching between models and frameworks. The configuration defined by the

user-specified pre-trained model is used to automatically instantiate these classes. Trans-

formers strive to make the use and delivery of pre-trained models as simple as possible.

Inherently, this is a team effort; a single pretraining run allows for fine-tuning on a number

of tasks. Any end-user may use the Model Hub to access a model and use it for their own

data. Its user interface is supposed to be simple and available to the public. This package

can be a model that was trained using the library or a checkpoint from another common

training tool. Next, the models are saved and assigned a canonical name that can be used

in two lines of code to import, cache, and run the model for fine tuning or inference.

One of Transformers’ most significant objectives is to simplify model production im-

plementation. Different users may have different production requirements, and implemen-

tation also entails addressing problems that are drastically different from preparation. As

a result, the library supports a number of output deployment techniques. One of the li-

brary’s most significant features is that models are accessible in both PyTorch and Tensor-

Flow, with interoperability between the two frameworks. A model trained using one of

these frameworks may be saved using the process of standard serialisation and also can

be reloaded using the save files in different frameworks very easily. There are deploy-

ment suggestions for each system. Models in PyTorch, for example, are compatible with

TorchScript, which is an intermediate representation of a PyTorch model capable of run-

ning more efficiently in Python or in a high-performance environment like C++. Models
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that have been fine-tuned can now be exported to a production-friendly setting and run via

TorchServing. Inside TensorFlow’s ecosystem, there are several serving choices suitable

for direct use. Additionally, models are able to be exported to intermediate neural network

formats for additional compilation using transformers. Finally, as Transformers grow more

commonly used for all NLP applications, it is becoming more important to apply them

within edge devices like phones and home electronics.

5.2 Implementation in Google Cloud Service

Below is the list of things that are needed before deploying the model into google cloud

run:

• GitHub repository (including codes and model)

• Google cloud run account

The GitHub repository is used to push the code to google cloud storage. Therefore, the

repository should be updated with all codes and data necessary to run the model. Later, the

model can be exposed as a service on the cloud by choosing the deployment option from

GitHub. To accomplish this, Google Cloud Build performs continuous integration using

GitHub. The mandatory files that the GitHub repository should have are listed below:

• model (saved pytorch_model.bin file, config file, vocab list)

• pipeline (script to predict the answer for given context and question)

• flask servers (serve request)

• docker file (for a running container)

• requirement.txt (for installing required libraries)

The deployment of the QA model in Cloud Run follows the following steps, which are

highlighted in Figs. 5.2 and 5.3:

• enable cloud run API (Go to “Marketplace” in Cloud Console and enable it)
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• select cloud run from Google Console, as shown in Fig. 5.1.

• create service in a service setting

• select Cloud Run (fully managed) for the Deployment platform

• select Region, followed by service name (after creating service, do not forget to

enable “Allow unauthenticated invocations”)

• select SET UP WITH CLOUD BUILD to connect the source GitHub repository

(need to select Dockerfile as a build type that will execute a docker container inside

Google Cloud Run)

• click on “Show Optional Settings” to change Memory, CPUs, and timeout (recom-

mend using 4GB of memory and 4 CPUs for faster operation)

5.2.1 Implementation in Webpage

The QA webpage is implemented from the cloud build. The webpage is designed using

HTML and CSS, which is saved in the “templates” folder in GitHub. The flask app is first

configured as in Fig 5.4, which is used to render the web page from the templates. After

building the docker, the service URL is generated from the cloud run that can open the web

page as in Fig 5.5. The deployed webpage contains two fields: Context and Question. The

context is entered in the “Context” field, and question in the “Question” field. Then the

submit button can be clicked to get the appropriate answer along with a question.

5.2.2 Implementation in Pepper

Unless we can apply ML to real life, the model is useless. Creating a chatbot is easier

than ever. Google’s DialogFlow is an obvious choice because it is effortless, fast, and free.

Dialogflow is Google’s Chatbot platform. We will use the Google online console to create

a Dialogflow agent that will be able to answer text queries (i.e. users can enter text in the

text field, which Pepper will hear). The following steps are needed for chatbot integration

with Dialogflow:

• The trained QA model

102



Figure 5.1: Select Cloud run from Google Console.

• The DialogFlow agent, which takes input from a user.

• A Flask app deployed on the web host, which renders the users request and QA

response

• Pepper makes a webhook call to the flask API to send the user’s request and fetch the

response

• Integration of DialogFlow with Pepper Android SDK plugin

A user can access the Pepper chatbot, which will be created in DialogFlow and integrated

with the Pepper android plugin later. The conversation will begin, and the chatbot will ask
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Figure 5.2: Create Service in Cloud Run.

Figure 5.3: Connect Github to Cloud Run.

the user to provide questions about the paragraphs’ context. When the chatbot receives

the last entry, it will initiate a webhook connection with the flask API to implement on a
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Figure 5.4: Flask App for calling the html web page.

Figure 5.5: Demo of Romanian BERT QA model in webpage.

public host. This API is composed of the application, which will convert the question into

a feature vector, fit it to our QA model, and then use the generated answer to respond to the

user.

First, DialogFlow is opened, prompting a Google account login. Next, "Create Agent"

is clicked to create the chatbot. Next, a design that requests data from the user and es-
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tablishes a Webhook connection is created. The default greeting intent is then modified

to invite the user to choose "yes" or "no". Once the user types "yes", DialogFlow must

trigger another intent prompting the user to enter data and save the data point to "entity".

In this case, only simple random numbers are being used, so entity creation is not required.

DialogFlow has a default unit for managing this data. Therefore, a "yes-Followup Intent"

for this sample must be created, because the attempt will be invoked after the user responds

positively.

Now, “Add follow up Intent” is clicked to say “yes”. The name of this intent can be

changed to another name as needed. Now, the entity must be added, which will contain the

data received from the user. For this case, the default unit sys.number is used for a single

entry. One parameter for a data point is then created. The model uses a few questions

for training to comprehend the desired responses. Next, the chatbot in the right panel is

tested to verify whether it is functioning properly. Upon completion, "Webhook for the

intent" is enabled to activate compliance. In this way, this special intent will hook the

application to the one implemented on the public host Google Cloud Run. Next, the flask

application must be compiled and implemented on the Google cloud run, then the URL put

in the "Fulfillment" tab on the left. The webhook call is the final implementation stage.

Next, the implemented application is connected with the chatbot by entering the URL that

implements the application and adding “/webhook”. Remember the flask code of the above

application directed to “/webhook”. In the “Fullfillment” tab in the DialogFlow panel (left),

“/webhook” is activated, then < yourapp
′sURL > /webhook is added, as shown in Fig

5.6. The webhook response can be checked using a test chat on the right panel.

5.2.3 Integration Dailogflow: Pepper

A Web Chatbot (Dialogflow in this example) can be incorporated into a QiSDK frame-

work for Pepper, and a pre-built Dialogflow agent can be used to create a Pepper that can

response to queries with an answer. The requirements for integration are:

• a Pepper QiSDK (NAOqi 2.9)

• Android Studio with the QiSDK plugin

• an internet connection

• a Dialogflow account
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Figure 5.6: Integration of webhook into the fulfillment of Dialogflow.

Before beginning the integration process, special credentials are needed to allow the an-

droid application to call the Dialogflow agent. To complete this, a Google clouds service

account must be logged into, and a key is added, which is downloaded in json format. This

is then renamed to “credentials.json”, which will be needed later on. Next, the project is

created with two modules in Android Studio.

• “app”, an android application that uses the QiSDK

• “data”, a java library containing all calls to DialogFlow

The app module does not need to know Dialogflow, and the "data" module is not required to

know Android. This will allow isolated Dialogflow calls to be tried without any additional

installations on Pepper’s tablet.

The following steps are needed to create an android framework and test it with a Di-

alogflow agent:

1. Create Android Project: A new android studio project (with Kotlin, API 23) must be

created. After creating a project, the application needs to be robotified as: (File >

New > Robot Application). Then, a new module of “Kotlin Library”, called “data” is
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created. Inside the module a class called “DialogflowDataSource” is created, and the

package name is updated. The “data” module contains build.gradle dependencies as:

implementation ’com.google.cloud:google-cloud-dialogflow:0.92.0-alpha’
implementation ’com.google.http-client:google-http-client:1.29.1’
implementation ’junit:junit:4.12’

2. Add the DialogflowSourceCode code:

The Dialogflow library here is wrapped in a simple method using a string input that

returns an input. The code for “DialogflowSourceCode.kt” is illustrated in Fig. 5.7

Figure 5.7: DialogflowSourceCode code.

3. Authentication setup:

A “raw” directory must be added where a “credentials.json” obtained from Google

Cloud authentication is put.
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Integration with QiSDK application:

Next, the android app must be integrated into the QiSDK application, which can then

communicate with the DialogFlow. Pepper receives a string input that refers to the human’s

query or response to return a ChatbotReaction object ( i.e. a potential output) in addition to

a reply priority. The android application will then analyze all possible reactions, pick, and

execute one (depending on the priority). Next, the following will be created:

• a DialogflowChatbot object

• the ChatbotReactions

1. ChatbotReaction: A ChatbotReaction denotes an action implemented by the chatbot;

e.g. typically causing Pepper to reply, but reactions are also capable of playing ani-

mations, display content, etc. Two primary types of reactions involved–(1)make the

robot reply something and (2) what action to take in the event that there is no way

to reply. In the “app” module, a new class named “SimpleSayReaction” is created

using the code as shown in Fig. 5.8.

Figure 5.8: SimpleSayReaction code snippet.

This block of code is used by Pepper when there is something to reply. Similarly, an-

other code block called “EmptyChatbotReaction” is created, which is invoked when

the reply is empty or there is nothing to reply. The code is shown in Fig. 5.9.

2. Chatbot Creation:

An actual chatbot class will be created that will call the DialogFlow library and output
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Figure 5.9: EmptyChatbotReaction code snippet.

the correct reaction, although this is dependent on the result. First, “‘DialogflowChat-

bot” class is created as seen in Fig. 5.10.

Figure 5.10: DialogflowChatbot class.

Then in the MainActivity, QiSDK lifecycle calls (QiSDK.register etc.) will be run. A

“chat” action for chatbot will be created and run in “onRobotFocusGained” as shown

in Fig. 5.12.

3. Finally, the chatbot is ready. The Pepper emulator can be started, and the code can

be fully run. The graphical interface can be used to interact with Pepper. The demo

of the QA model is shown in Fig. 5.12.
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Figure 5.11: onRobotFocusGained code snippet.

Figure 5.12: QA demo in Pepper.

5.3 Haystack

Haystack is an open-source platform for massive document collections to create end-

to-end question answering systems. The application of QA to real world environments has

been made possible by recent developments in NLP. Haystack is intended to act as a bridge

between science and industry.

Given these above pipelines and architecture, Haystack comes out with major benefits

of document retrieval along with integration of pretrained models from Hugginface. Most

of the above-mentioned pipelines are knowledge or table-based QA, which fails to integrate

the Huggingface transformer library. On the other hand, Haystack provides a complete
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framework to extract information using Elasticsearch which helps to retrieve the context for

BERT based QA. In addition to this, it also provides framework to integrate Huggingface

library for creating a end-to-end chatbot for commercial use.

• NLP models: Use all models based on transformers (BERT, RoBERTa, MiniLM,

DPR, etc.) and turn smoothly when new ones are released.

• Flexible databases: Load data from a number of databases such as SQL, Elastic-

search, and FAISS and query them.

• Scalability: Deployments ready for production that scale to millions of documents.

• End-to-End: All the tools needed to introduce, analyze, optimize and operate a QA

framework.

• Domain adaptation: Fine-tune models to own domain and continually enhance

them via user feedback.

In order to maximize both speed and accuracy, Haystack is operated by a Retriever-

Reader pipeline as shown in Fig. 5.13.

Figure 5.13: Architecture of Haystack [5]

Readers, also referred to in ML as Open-Domain QA systems, are efficient models that

interpret documents closely and perform the important primary task of answering ques-

tions. The Haystack readers are trained using new language models based on transformers,

and GUP acceleration can be implemented to greatly improve upon the speed. Currently,

however, it is impossible to directly implement the Reader on large collections of docu-

ments. By acting as a lightweight filter that decreases the amount of documents required

for processing by the Reader, the Retriever helps the Reader. It does this by following

steps:

• Scanning through all the database documents.
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• Rapid identification of the relevant and dismissal of the irrelevant.

• Passing only a small number of candidate documents to the Reader.

Uses of Haystack

The uses of Haystack can be extended to various applications of Semantic Search Sys-

tem, Information Extractor, and FAQ style Question Answering.

Semantic Search System

Semantic Search System uses a keyword search in documents to semantically search

with Haystack. It is basically achieved by performing question driven queries on stored

documents in the database (Elasticsearch, SQL, in memory, FAISS) as shown in Fig. 5.14.

Figure 5.14: Semantic Search System [6]

Information Extractor

It automates the retrieval of relevant information from a set of documents relating to the

same subjects, but for various entities. Haystack applies a set of standard question to each

of the documents and responses NO_Answer if the particular document does not contain

the answer.
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FAQ Style Question Answering

It uses existing FAQ documents as well as semantic similarity search to answer new in-

coming questions. First, it stores the FAQ document in the Haystack, then users represent a

new question. Haystack tries to find the closest match the the question in the FAQ database

and user will be returned with the most closest question answer pair.

Retrieve Context for QA using Haystack

In order to design a full-fledged chatbot, the QA model of BERT has to be modified.

The input for BERT-based QA consists of a question and the context where the answer is

present. This dynamic nature of the QA model makes chatbot development difficult. In

order to tackle this problem, we use this haystack to automatically search the context for a

particular question which is then fed to BERT for the answer as shown in Fig. 5.15. The

full step-wise process has been explained below:

Figure 5.15: Architecture QA model using Haystack.

5.3.1 File Conversion

The haystack uses different converters to remove text from the original files (e.g., docx,

pdf, html, txt, etc.). Although the number of styles, layouts, and special cases (especially in

the case of PDFs) can be overwhelming, we will discuss the most commonly used formats,

including multi-column, and extract meta-information (e.g. page splits). The converters

can be quickly expanded to configure them to required files. There are various options for

converting files such as Txt, PDF, Docx etc.
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5.3.2 Preprocessing

In preprocessing, cleaning and breaking the texts are effective measures that can signif-

icantly impact your search speed and accuracy. Splitting larger texts is extremely important

in order to achieve rapid query speed. The lengthier the text passed to the reader by the re-

triever, the slower the queries. The haystack provides a basic PreProcessor class allowing:

• Clean whitespace, headers, footers, and empty lines

• Split by words, sentences, or passages

• Option for "overlapping" splits

• Option to never split within a sentence

5.3.3 DocumentStores

This section deals with the preservation of context paragraph in database. The docu-

ments can be separated into smaller units (e.g. paragraphs) prior to indexing to improve

the granularity and precision of the returned context. We do such operations using Elastic-

Search.

5.3.4 Elastic Search

Based on Apache Lucene and developed in Java, Elasticsearch is a distributed, open-

source search, and analytics engine. It began as a modular version of the open-source

Lucene search platform and then introduced the ability to scale Lucene indices horizon-

tally. Elasticsearch helps in near real-time store, search, and interpret massive amounts of

data and return answers in milliseconds very easily. It is capable of obtaining fast search

results since it scans an index instead of specifically scanning the text. Instead of tables

and schemas, it uses a framework based on documents and comes back with comprehen-

sive REST APIs to store and scan the data. You can think of Elasticsearch at its heart as a

server that can handle JSON requests and deliver JSON data back to you. The working of

an elastic search can be categorized using the following elements:
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Documents

Documents are the simple unit of knowledge that can be indexed to Elasticsearch ex-

pressed in JSON. In Elasticsearch, a document can be more than just text; it can be any

structured data encoded in JSON. These data may be stuff like numbers, sequences, and

dates. Each document has a unique ID and a certain type of data that defines the type of

entity that the document is.

Indices

An index is a collection of papers that have similar features. In Elasticsearch, an index

is the highest-level object that you can check against. In a relational database schema, you

might think of the index as being identical to a database. Usually, all records in an index

are linked logically. For starters, in the sense of an e-commerce platform, you will have an

index for customers, one for goods, one for orders, and so on. An index is known by a term

used to refer to the index when indexing, browsing, reviewing, and deleting operations are

conducted against the records it contains.

Inverted Index

An index in Elasticsearch is called an inverted index and is the process used to run all

search engines. It is a data structure that stores a mapping of a document or a series of

documents from information, such as words or numbers, to its positions. Basically, it is a

HashMap-like structure of knowledge that guides you to a document from a phrase.

5.3.5 Retrievers

The Retriever is a very powerful "filter" that can easily run the entire document store

along with transferring a selection of candidate documents to the Reader. It is a platform to

sift out obviously bad scenarios, stop the reader from performing more work than it wants,

and speed up the query process. In our work, we have used the elastic search retriever for

fetching a context.
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5.3.6 Readers

Readers are mostly Transformer-based models, RomBERT in our case, that read the

text in detail to find the answer. We have already trained our dataset using RomBERT,

which takes questions from the user and extracts the context for that particular question

using Elastic search then find the corresponding answers with their probability scores.

5.3.7 Pipelines

To construct modern search pipelines, dynamic building blocks are required along with

a way to combine them together in a flexible manner. The Pipeline class is designed

used for such a purpose that initiates various search scenarios. A simple example of Open

Domain QA Pipeline is given by:

5.3.8 Results

In order to have a QA model, we use a latest Romanian QA dataset known as RoITD

[148]. The dataset consists of total 5043 articles with total 9575 questions. The overall

statistics of dataset seen in Table 5.1.

Train Test All
Number of articles 4170 813 5043

Number of questions 7175 2400 9575
Average passage length 52.72 61.97 55.04
Average question length 8.08 8.12 8.11
Average answer length 13.44 7.85 9.25

Vocabulary size 38265 18396 48821

Table 5.1: Dataset Statistics for splitted train and test sets.

Models EM F1-Score
bert-base-multilingual-uncased (mBERT) 35.48 50.94

bert-base-romanian-uncased-v1 (romBERT) 35.06 53.62
distilbert-base-multilingual-cased (distilBERT) 34.15 45.72

ALR-BERT-cased (Romanian ALBERT) 39.16 42.44

Table 5.2: RoITD dataset baseline performance.

We then evaluate this MRC dataset using various state-of-the-art models. We employed
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two evaluation metrics (i.e., EM and F1-score) to assess MRC model performance on our

dataset, consistent with evaluations on English SQuAD [167]. The overall comparison of

selected baselines models are shown in Fig 5.2.

• bert-base-multilingual-uncased (mBERT): Multilingual BERT (M-BERT) has re-

cently demonstrated surprising cross-lingual abilities, despite being trained with-

out any cross-lingual objectives and without aligned data. mBERT consists of a

transformer-based language model that is trained on raw Wikipedia sentences in 104

languages, suggesting an entirely different approach. There is no explicit cross-

lingual signal in training, e.g. words, sentences, documents that are linked across

languages. In addition to its contextual nature, the model also doesn’t require any su-

pervision, since there is no alignment between the two languages. Although mBERT

is not explicitly trained with cross-lingual objectives, the representations it produces

seem to generalize across languages for a variety of downstream tasks. Here in case

of RoITD dataset mBERT achieves EM of around 35% and F1-Score of 50.94%. This

is assumed to be the baseline for this dataset. This is because multilingual BERT has

been recognized as an established multi language model. This is one of the best

performing model of RoITD because with mBERT, the WordPiece modelling strat-

egy can share embeddings across languages. Moreover, mBERT efficiently learns a

good multilingual representation with excellent cross-lingual zero-shot transfer per-

formance in a variety of tasks.

• distilbert-base-multilingual-cased (distilBERT): distilBERT shares the same gen-

eral architecture as BERT. As a result of the removal of token-type embeddings and

the pooler, the layer count has been reduced by a factor of 2. In the Transformer

architecture, most of the operations (linear layer and layer normalization) are highly

optimized in linear algebra frameworks, and investigations have shown that varia-

tions on the last dimension of the tensor (hidden size dimension) influence compu-

tation efficiency less than variations on other factors like the layer count. In the pre-

training phase, distillation of knowledge is used, demonstrating that a BERT model

can be reduced in size by 40% while maintaining 97% of its language understanding

capabilities and being 60% faster. Hence distilBERT performs very decent compared

to mBERT. It still manages to achieve almost similar EM with 34.15% but lower

F1-Score with 45.72%.

• bert-base-romanian-uncased-v1 (romBERT): romBERT is trained using three
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publicly available corpora: OPUS, OSCAR and Wikipedia. A vocabulary is built

from the corpus available for pretraining. The vocabulary piece count for cased and

uncased vocabularies is 50000 using byte-pairencoding (BPE). As a general rule, the

better the tokenization of sentences (roughly, the fewer pieces are broken up into

each word), the better the model will perform. Romanian BERT can encode a word

in 1.4 tokens while mBERT is able to encode a word in up to 2 tokens. A model

is trained for 1M steps, with the first 900K trained with 128-byte sequences, and the

rest wit outperforms all the model including distilBERT and mBERT. It achieves EM

of 35.06% and F1-Score of 53.62%. This is the highest F1-Score among the selected

baselines. This is due to the fact that romBERT has distinct set of vocabularies that

has been language understanding compared to mBERT. This shows that language

models must have a strong vocabulary in order to perform well.

• ALR-BERT-cased (Romanian ALBERT): ALR-BERT is a multi-layer bidirec-

tional Transformer encoder that shares ALBERT’s factorized embedding parame-

terization and its cross-layer sharing capabilities. In addition to inheriting ALBERT-

base, ALR-BERT-base has 12 parameter-sharing layers, a 128-dimension embedding

size, 768 hidden units, 12 heads, and GELU non-linearities. With fewer parameters

than BERT, ALBERT achieved new state-of-the-art results on GLUE and SQuAD

benchmarks. For achieving cutting-edge results on downstream tasks, it is impera-

tive to have a large network. While BERT is a good candidate for training a large

language model on huge corpora, experimenting with large BERT models is difficult

owing to memory and computational restrictions. Hence, ALR-BERT gives an alter-

native to such huge model with very fewer parameters trained on specific Romanian

language. The performance ALR-BERT shows that with the reduced parameters, the

accuracy does not drop significantly as it achieves F1-Score of only 42.44%. How-

ever, the it outperforms all the selected baselines for EM as it achieves 39.16%. It

shows that despite of having fewer parameters the answers it generates are quite sim-

ilar to the actual answers. Hence, we can conclude that the quality of answers does

not necessarily depends on the size of the model but how efficiently the model is

trained.

We now evaluate the execution time of each answer for selected baselines as well as

their average EM for selected number of answers. Execution time is calculated in seconds.

The comparison of EM and execution time for given baseline models are shown in Fig 5.17.
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As we can see that, average EM of several experiments demonstrates that ALR-BERT, bert-

base-romanian-uncased, bert-base-multilingual-cased performs quite similar. However, the

execution time shows different scenario. ALR-BERT takes maximum execution time com-

pared to bert-base-multilingual. Finally the bert-base-romanian model shows best and least

execution time among the selected baselines.

In addition to this, we also study various query used to extract answer from trained

model’s pipeline. We have used various searching algorithms that are briefly explained

below:

• FAISS: FAISS is Facebook AI Similarity Search, a library that enables us to swiftly

search for multimedia materials that are similar to one another – a problem that typi-

cal query search engines fail to meet. Faiss is a library for fast dense vector similar-

ity search and grouping. It includes methods for searching in sets of vectors of any

size, up to those that may not fit in RAM. It also includes accompanying code for

evaluating and fine-tuning parameters. Faiss has numerous ways for searching for

similarities. It is assumed that the instances are represented as vectors with integer

identifiers, and that the vectors may be compared using L2 (Euclidean) distances or

dot products. Vectors that are comparable to a query vector have the lowest L2 dis-

tance or the highest dot product with the query vector. Because it is a dot product on

normalized vectors, it also enables cosine similarity.

• sql: Structured Query Language (SQL) is a computer language that is used to man-

age relational databases and execute different operations on the data contained inside

them. SQL is used in relational database management systems to edit database ta-

ble and index structures, add, update, and delete rows of data, and retrieve subsets

of information. This data can be utilized for transaction processing, analytics, and

other applications that need communication with a relational database. SQL queries

and other operations are expressed in the form of statements and aggregated into

programs that allow users to add, change, or retrieve data from database tables.

• elastic search: Elasticsearch is a distributed, open-source search and analytics en-

gine written in Java that is based on Apache Lucene. It began as a scalable version

of the open-source search framework Lucene, then added the ability to grow Lucene

indices horizontally. Elastic search allows you to store, search, and analyze massive

amounts of data in near real-time and provide results in milliseconds. It is possible
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to produce quick search results because, rather than searching the text directly, it

searches an index. It has a document-based structure rather than tables and schemas,

and it has rich REST APIs for storing and finding data. Elasticsearch may be thought

of as a server that can handle JSON queries and return JSON data.

• In memory: In-memory analytics is a method of querying data that is kept in a com-

puter’s random access memory (RAM), as opposed to data saved on physical drives.

As a result, query response times are drastically reduced, allowing business intel-

ligence (BI) and analytic tools to support speedier business decisions. In-memory

analytics is becoming more affordable for more enterprises as the cost of RAM falls.

Although BI and analytic programs have long allowed data caching in RAM, previ-

ous 32-bit operating systems only supplied 4 GB of accessible memory. With up to 1

terabyte (TB) accessible memory (and maybe more in the future), newer 64-bit oper-

ating systems have made it feasible to cache massive amounts of data – potentially an

entire data warehouse or data mart – in a computer’s RAM. In addition to delivering

extremely quick query response times, in-memory analytics can decrease or remove

the requirement for data indexing and storing pre-aggregated data in OLAP cubes

or aggregate tables. This minimizes IT expenses while also allowing for speedier

installation of BI and analytic apps.

Given the merits and demerits of search algorithms, we can see that execution time of

all selected algorithms are not significantly distinct. Most of them perform similar based on

the execution time in seconds. However, Faissembedding performs the worst as it has the

highest execution time per answer with 0.786s. inmemorytf stands next to In-memory-tf

with 0.785s. The best performing models is inmemoryembedding with execution time of

0.726s. We can clearly see that rest of the model such as elastic search and sql performs

very similar to each other with around 0.77s. In all brevity, it can be seen that there are

not any significant difference in execution time based on the search algorithms. On the

other hand, model type significantly impact the execution time. In addition to this, EM has

compelling difference in EM as compared to model type. SQL outperforms all the other

search algorithms with EM of 40.35% with second highest EM 39.62% of elasticsearchtf.

However, elasticsearchdense performs poorly which is quite similar to faissdense, faiss-

embedding, and inmemory search algorithms.
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Figure 5.16: Comparison of EM and execution time in seconds for selected models.

Figure 5.17: Comparison of EM and execution time in seconds for selected models.

5.4 QA using Knowledge Graphs

Question answering (QA) is a particularly challenging natural language processing

(NLP) task that has served as a huge source of scientific interest. To answer a given ques-

tion, models must search through a vast reservoir of pertinent information, then form an

appropriate answer that fits within the context of the original question. Additionally, it

is expected that this complex language-based task be completed with human-level accu-

racy. Two general approaches have been developed for QA tasks–implicit encoding and

explicit representation [219]. During implicit encoding, knowledge is stored within large

LMs by pre-training using unstructured text [41, 160]. In the case of explicit representa-

tion, knowledge is contained within structured KGs using nodes to represent entities and
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edges to represent the relations between nodes. Examples of KGs include Freebase [39]

and ConceptNet [190]. Although LMs can demonstrate broad knowledge coverage, they

tend to struggle with structured reasoning such as handling [114]. KGs, meanwhile, show

strong performance in structured reasoning [170, 171] to introduce explainable prediction

capability [130] but are noisy and deficient in coverage [40, 91].

Figure 5.18: Joint reasoning between the language model and knowledge graph (green
box) for a given question-answer (purple box) [219]

Although QA procedures have undergone a substantial amount of advancement over

the past decade, the most accurate current methods include a combination of LM and KG.

To combine these approaches, the model must be able to identify information from a large

KG, then perform joint reasoning between the QA context and KG structure (Fig. 5.18).

Several of these methods have been reported in the literature. In several of these combined

LM and KG models, a subgraph is retrieved from the KG using the KG entities provided by

the posed question context, or topic entities, and their few-hop neighbors [30, 130, 194]. A

primary disadvantage of this method is that it introduces many semantically irrelevant entity

nodes with respect to the QA context, particularly with increasing numbers of topic entities

or hops. Other reported combined LM and KG models targeting reasoning applications

approach the question context and KG as separate modalities [74, 130, 135, 214]. QA-

GNN is a form of combined LM and KG model that uses an end-to-end approach where
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the LM identifies the relevant information contained within large KGs, then provides a

concise, natural answer [219]. QA-GNN is an end-to-end hybrid LM-KG model designed

specifically for QA tasks where the LM encodes the QA context followed by KG subgraph

retrieval (Fig. 5.19 [219]. QA-GNN handles QA tasks using a combination of relevance

scoring and joint reasoning. Relevance scoring is completed by estimating the importance

of each KG node with respect to the provided QA query [219]. Joint reasoning involves

the connection of the question context with the KG to produce a joint graph that combines

these two modalities to form one working graph [219]. Representations can then be updated

using graph neural networks.

Figure 5.19: Overview of the QA-GNN model where a provided QA (z) is connected with
a sourced KG to create a joint graph, also referred to as a working graph. The relevance
for each node in the KG is conditioned on z, and reasoning is performed on the working
graph. [219]

Domain gaps are a common issue in neural networks and LMs where the model is able

to provide human-level performance on the dataset used for training but cannot maintain

this performance level when generalizing on other datasets [70]. Transfer learning targets

this issue by bridging the gap between LMs and other source domains to improve model

performance even in complex target domains [70]. Domain adaptation is a type of transfer

learning that minimizes gaps separating target and source domains in order to reduce the

amount of data required for model training [70]. Essentially, domain adaptation improves

model performance on large datasets other than the training dataset, eliminating the need

for additional training aside from only the last layers. In domain adaptation, the bridged

datasets generally have similar classes although they will come from different distributions

that create large style differences. KGs are used to focus the LM and incorporate large

volumes of information other than the pretraining data.

KGs can be used for a vast variety of data forms including digital humanities [71, 106,

139, 184]. KG embeddings (KGEs) are used to map the nodes and entities of a specific

KG component into a low-dimensional continuous vector space in order to simplify the
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KG data [70]. The method used to complete this process uses a score function to measure

the distance between two nodes within the mapped embedding space. Thus, the score

function maintains the position of nodes within the KG despite this data simplification. KG

embedding can be completed using two primary components–an encoder and a classifier

(Fig. 5.20) [70]. The classifier uses a dimension mapper, or latent space mapper, to convert

the dimensions of the visual embeddings to match the embeddings in the KG (Fig. 5.20).

The KG embeddings form the final encoder layer. The source domain is derived from the

original KG used to connect dataset information with the concepts, CS , contained within

the KG to form data clusters around the concepts. This allows for information linkage

with class information along with several axes. The source domain is described by XS =

(xS
i , y

S
i )

N
i=1 where xS

i are the variable sized input images, ySi are the associated classes, and

N is the source dataset size [70]. The target domain data is described by X t = (xt
i, y

t
i)

M
i=1

where ysi is the respective class, and M is the target dataset size [70]. The model function,

f , is comprised of the encoder function, e, and classifier function, c, where f = e ◦ c. In

this relationship, e : X → Z maps input information to a 1D vector latent space [70]. This

is the embedded information that is later classified into a corresponding class where the

embedding space is mapped into the label space which is described by c : Z → Y [70].

Figure 5.20: Algorithm details of knowledge graph embedding-based domain adaptation.
[70]

The encoder transfers the input shape from a 3-channel 2D array to a 1D vector acces-

sible to LMs, as described by the following equation:

zv = E(x), x ∈ Xs ∪X t, zv ∈ Rv (5.1)

where zv ∈ Zv annotates the 1D vector extracted using the pre-trained encoder that

extracts information from the KG [70]. A set of v float numbers within the embedding
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space can be described as v ∈ [256, 4096], although this is model dependent [70]. The

output produced by the encoder is passed to the spacemapper used for classifier training.

The embeddings are class-informative (i.e., extracts information about the object label) and

domain-independent (i.e., same-class information is grouped together independent of their

domain origin). The source domain output from the encoder is represented as zS = E(xS).

The latent space of the target samples is represented as zt = E(xt).

The dimension mapper deals with the variable latent space dimensions produced by the

pre-trained model by outputting encoder embeddings in Rv to match the dimension of the

KG in Rk. This is described by the following equation [70]:

zv2k = DM(zv) = DM(E(x)), x ∈ Xs ∪X t (5.2)

The dimension mapper function maps values according to Rv → Rk.

The classifier acts as a simplified version of the fully-connected LM and is most com-

monly used for image classification. For a cross-entropy loss function, the classifier input

is the mapping of the visual latent space that is transformed from Rv to Rk with k < v [70].

The output is comprised of a 1D probability vector. This serves as the model’s prediction

along with the probability of it belonging to each class, ŷ. The following equation describes

the classifier function:

ŷ = C(zv2k) = C(DM(E(x))), x ∈ X,X = Xs ∪X t (5.3)

where ŷ is the per-class probability vector. This is the classifier output shared between

both domains as described by ŷ ∈ Ŷ , Ŷ = Ŷ S ∪ Ŷ t [70]. The encoder, dimension map-

per, and classifier are trained on the source domain until convergence is achieved prior to

beginning domain adaptation. The output from the classifier regarding the target domain

is later used as pseudolabels that can be used to improve the model training provided the

classifier is confident in the process.

Several loss functions are used to train the model and its components including classifi-

cation loss and anchoring loss. Classification loss is the first loss function used to train the

model and impacts encoder, lassifier, and dimension mapper training. Differences between
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the output and label probability distributions are reduced by the cross-entropy loss function

H(, ., ) using the following equation [70]:

Lc(W
E,WC ,WDM) = (1 ∗

∑
xS∈XS

H(ŷs, ys) + λt

∑
xt∈Xt

H(ŷt, yt)) (5.4)

where λt is a hyperparameter used to control the loss contribution shared by the two

domains. The anchoring loss marks the KG embeddings as anchors, then moves mapped

embeddings closer to these anchors to improve their quality. This embeds additional infor-

mation in the encoder training without requiring the use of the data as classifier input [70].

The anchoring loss combines increased fusion model accuracy with the superior speed

and generalizability provided by a single source model [70]. Linear discriminant analysis

(LDA) and Fisher’s linear discriminant form the anchoring loss which is described by the

following equations:

Lanc(W
E,WDM) = (

∑
i∈Y

∑
c∈C(d(µ

c
v2k, z

c
v2k−i))∑

ci∈C
∑

cj∈C d(µci
v2k, µ

cj
v2k)

)× λBF (5.5)

λBF =
mini

∣∣Y t
i

∣∣
maxi

∣∣Y t
i

∣∣ (5.6)

where µc
v2k is the center of the mapped visual concept embedding, ack is the corre-

sponding anchor, (d(µc
v2k, a

c
k) is the reduced distance between the mapped embedding and

corresponding anchor, zcv2k−i is the distance between the center of the mapped visual con-

cept embedding and the corresponding mapped embedding, and (d(µc
v2k, a

c
k) is the reduced

distance between the mapped embedding and the corresponding mapped embedding. The

anchoring loss targets the minimization of both of these distances. One disadvantage of the

anchor loss is that it generally produces higher values in comparison with the classification

loss (by approximately 10-15 times), which can influence the classification direction. Ad-

ditionally, this loss has a tendency to be imbalanced and depend on random samples that

requires the use of a balancing factor λBF . The losses can be optimized using:

L = minWE ,WC ,WDM1 ∗ LC + βALanc (5.7)
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where βA is a balancing parameter (usually between 0.01-0.03).

Figure 5.21: Overview of the algorithm. [70]

Figure 5.21 shows a detailed summary of the algorithm used for KG embedding in

domain adaptation [70]. First, a KG describing the source dataset is leveraged. Next, an

embedding of each datapoint is created based on nodes and the connections between them.

The LM is then trained using classification loss. Finally, the encoder is able to extract the

structred and class-informative latent space. This allows the classifier to better generalize

to other domains.

5.4.1 Results

The objective of this section is to evaluate the effectiveness of incorporating knowledge

graphs into the framework of question answering. Knowledge Graphs (KG) are graphs

that encode relations of a certain body of text into the connections of entities (nodes) and
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relationships between them (edges). To produce this graph, it’s necessary to perform a

semantic analysis over the text that extracts the fundamental semantic structure composed

of Subject + Predicate + Object in which the object and subject constitute nodes and the

predicate constitutes the edges. In the same sense that it was desirable to produce geometric

representations of words for NLP, it is desirable to produce geometric representations of

the KG. In this case the most widely spread method is to compute embeddings of nodes

and edges in such a way that the nodes that were close together in the graph, are kept close

in the embedding space. In this sense, the following relation holds for to arbitrary nodes:

vnode1 = vnode2 + vedge12 (5.8)

The algorithm producing the embeddings should try to minimize the distance between

nodes 1 and 2 while mantaining the overall graph structure.

The main steps taken in the implementation approach are:

1. First, a series of tuples containing (context, question, answer) are sampled from

the data.

2. The encoder-Decoder Model with attention is trained with a Categorical cross-entropy

loss function over that data set.

3. The same data-set is also used to compute the knowledge-graph and its embeddings.

4. Another, smaller, data set is then sampled and training is again performed but now

the anchor loss function is included to the training process. G.

For computing the knowledge graph incoming from the text corpus the python library

[12] was used to make the semantic analysis required for entity and relation extraction. The

graph construction was then done using the well known Python library [7]from the lists of

source, target and relationship coming from [12]. The next step is to evaluate the Question

Answering model, this is usually done by computing a series of metrics which elaborate on

distinct goals (final and intermediate) for the model to accomplish. In this project we will

focus on two metrics: Exact match and F1 score. These two metrics are tailored to evaluate

the model’s end result, this is, how well it answers the given questions. The metrics are
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calculated as follows:

EM =
exactly matching answers
total evaluated questions

× 100 (5.9)

P =
true positives

true positives + false positives

R =
true positives

true positives + false negatives

F1 = 2
PR

P +R

(5.10)

We can now present the results of the implementation and contrast them with another

very well known framework [2]. Given the available resources we will concern ourselves

with presenting the values for the EM and F1 metrics for both models trained over the

same data set. The results are shown in table 5.3. It can be seen from them that the model

struggles with the dataset as the implementation of the anchor loss approach poses some

challenges in order to achieve good performance. The original anchor loss was posed for a

classification problem. Superficially, Question answering isn’t a classification problem but

it encloses one in the form that the last layer of the decoder is interpreted. In this sense, the

anchor loss should be reinterpreted to account for the fact that the output of the model is a

sequence of logits over the vocabulary space predicting each word of the output sequence.

There are two ways one could calculate this loss:

1. Just use the output sequence predicted by the training sampler and use those se-

quences to calculate the distance between them and the KG embeddings.

2. Using the output logits to calculate a series of predictions and then compute distance

between them and the embeddings.

Another challenge that was encountered by the author is the limited access to hardware

resources. Training NLP models is a very hardware intensive task and this is reflected

in the quality of the results which are. Better hardware is paramount for helping with

improving the quality of the model since it will allow us to add richer internal states for the

RNN and better word embeddings trained on larger datasets.
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Table 5.3: Results for the EM and F1 metrics

EM [%] F1 [%]
Anchor Loss Model 35 25
Haystack 55 54
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Chapter 6: QA USING BAYESIAN INFERENCE
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6.1 Next best Answer using Bayesian Inference

Deep learning multi-class classification models typically produce a probability distri-

bution {πi ∈ Π;
∑K

i=1 πi = 1} over a set of possible K classes ci ∈ C. Training a neural

network is equivalent to maximizing the likelihood of the parameters θ of the model to

describe the data L(θ|X). In other words, the training process is an evidence acquisition

process where training data is utilized to update the prior knowledge of the model about the

problem. During inference, the posterior predictive probability P (x∗|θ) uses the acquired

knowledge about the problem, modelled into the updated prior, to make predictions about

new data. Upon the arrival of new observations, updating the prior requires fine-tuning the

model by resuming the training process on the newly observed data. However, this can be

a costly process when the model is large, which is typically the case with models used in

complex problems like NLP where transformer models usually involve millions of train-

able parameters. The approach described in this documentation provides an alternative way

to calibrate model predictions with new instance-specific observations.

Given a probabilistic output of a machine learning multi-class classification model p̂ii,

and an observation about one or more of the events classified by the model y∗i , the goal is to

calibrate the output with the new observations, in a bayesian context, and without retraining

or fine-tuning the model. Table 6.1 illustrates the problem, where π̂ are the classifier output

probabilities, y∗ are the new observations, and π∗ are the updated probabilities, which are

the objective.

Table 6.1: An Illustration of the problem.

Class A Class B Class C Class C
π̂ 0.5 0.1 0.3 0.1
y∗ 0 - - -
π∗ ? ? ? ?

We assume events follow a Multinomial distribution, since the output is a single event.

x1, x2, ..., xk
iid∼ Multinomial(n, θ1, θ2, ..., θn)

where
∑k

i=1 θi = n, k is the number of possible events, and n is the hyperparameter quan-

tifying the number of trials.
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The probabilities of the multinomial distribution are assumed to follow a Dirichlet dis-

tribution, since Dirichlet is a conjugate prior to the Multinomial likelihood of the observed

events.

θ1, θ2, ..., θn
iid∼ Dirichlet(α1, α2, ..., αn) where αi is a hyperparameter.

Now that we have the likelihood and the prior, we can easily calculate the posterior:

p(x|π) = Mult(x|π)Dir(π|α)

∼
n∏

k=1

θxk
k

n∏
k=1

θαk−1
k

∼
n∏

k=1

θxk+αk−1
k

= Dir(x+ α)

Since observations are rather outputs of a softmax function, we normalize the multino-

mial parameters by n to get probabilities πi = θi/n.

Given that new probabilities are provided, how do we update the the probabilies over

the rest of the classes?

- We approximate the Dirichlet probabilities to Multinomial counts by scaling them a

positive real constant C to approximate them to counts. The constant C is a hyperparameter

inversely proportional to the dependency on the prior α of the Dirichlet distribution. Larger

values of C correspond to lower importance of the prior. xi = C ∗ πi where xi is a positive

count.

- We update π̂i with the new observed counts x∗
i :

π̂i =
αi + x∗

i∑K
j=1 αj + x∗

j

We setup our experiment by training ALR_Bert QA model on the RoITD dataset.

The tokenizer model used in the experiment is the bert-base-romanian-cased-v1

model. The ALR_BERT model was trained for 5 epochs, which accounted for 5,665 train-

ing steps. The RoITD dataset was split into 9,057 samples for training, and 100 for testing.
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Our hypothesis is that, suppressing the top prediction and updating the remaining tokens’

probabilities would force the model to explore more answers, which in turn is likely to

improve the recall of the model.

To evaluate our approach, we apply a softmax function on the model’s output log-

its. The hyperparameter C in the bayesian step is set to the number of tokens in the in-

put. The highest probability is replaced by a 0, and passed through the bayesian update

step. Upon obtaining the predicted start and end indices, the correct and predicted answers

are processed through a string normalization function. Remove articles, punctuation, and

white-spaces, and case-folding the answers is necessary before matching the correct with

the predicted answers. Two answers could mean the same thing while not being an exact

match. Since it is less likely that the predicted answer matches the correct answer charac-

ter to character, we abstract the answer into a set of tokens and consider the intersection

between the two sets of tokens for performance evaluation. With this configuration, the

following classification metrics were used to evaluate each answer pair, and averaged over

the entire testing set.

Precision =
Number of Common Tokens

Number of Tokens in the predicted answer

Recall =
Number of Common Tokens

Number of Tokens in the true answer

F1 = 2 · Precision · Recall
Precision +Recall

The fine-tuning performance of the pre-trained ALR BERT model are shown in table

??.

Results in table 6.2 show that recall is noticeably improving after a single bayesian

update over the predicted probabilities of start and end scores. We ran an independent t-test

to evaluate the significance of the improvement over the recall, and to see if the noticed drop

in precision and f1-score are significant. The P-values are not low enough to conclude that

there is a significant change in the performance of the model before and after the bayesian

update step.

When an expert marks the first predicted answer as wrong, the model is expected to
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Step Training Loss
500 3.76

1,000 3.715
1,500 3.54
2,000 3.47
2,500 3.40
3,000 3.28
3,500 3.30
4,000 3.12
4,500 3.17
5,000 3.01
5,500 2.999

Table 6.2: Effect of a single Bayesian update on the accuracy of the 1st answer.

Bayesian Updates
Metric 0 1 2 3 4
Precision 27.84 24.75 25.66 19.85 24.24
Recall 13.03 15.96 13.77 11.93 13.20
F1 15.53 15.35 14.90 12.47 14.11

report the second most probable answer. We evaluate the performance of the bayesian

update step on the second most probable answer if the precision of the first answer is

less than 90%. Results shown in table 6.3 indicate a promising potential for the bayesian

update method to improve the accuracy of the second most probable answer, if the first

answer is rejected. Despite the improvement not being significant, it is worth noting that

the marginal improvement in accuracy is at negligible computational cost compared to the

expensive process of fine-tuning a pre-trained deep model on new observations (i.e. using

the predicted first answer as a negative sample).

Metric No B. Updates 1 B. Update P-value
Precision 29.02 30.14 0.58
Recall 13.78 15.37 0.32
F1 14.34 15.98 0.29

Table 6.3: Effect of a single Bayesian update on the 2nd answer if 1st answer is rejected.

For more granular contrast of the results, we show in figure 6.1 case the difference in

the token scores before and after one step of bayesian update.
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(a) No Bayesian Update. (b) One-step Bayesian Update.

Figure 6.1: Token scores with vs without bayesian update.
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Chapter 7: CONCLUSIONS

7.1 Conclusions

Recent advances in artificial intelligence have produced significant advances in natural

language processing (NLP). The majority of big corporations are particularly interested in

NLP applications for question answering (QA) jobs. A entails a user submitting a natural

language-formatted query, which the language model then answers clearly and properly

(LM). NLP technologies, such as chatbots, should be able to discern intent while dealing

with user inquiries. Hence, in this project we design a model that is capable of interpreting

questions in real-time using less training data. When a user says anything, the chatbot

should be able to conduct intent classification to determine the meaning of the statement.

Chatbots, like human conversation, frequently speak in rounds. The goal of the challenge is

to accurately answer to your request, since the dialog serves as the context. In this scenario,

obtaining the proper answer entails collecting a huge number of small text fragments and

categorizing them based on their assessed significance for the inquiry. As a result, the job

is to retrieve these text fragments and categorise them in order to answer the question while

keeping the context of the dialogue in mind. The primary goal of QA systems is to create

technology that not only finds the proper documents but also provides accurate responses

to natural language inquiries. More advanced text processing than what is currently used

in the information retrieval system is necessary to answer inquiries in natural language.

The application of language modeling to NLP has led to the development of advanced

tasks such as machine reading comprehension (MRC). To answer offered queries, MRC

requires computational comprehension of natural language content. Achieving this task is

especially important for advanced search engines and intelligent agent frameworks, but it

comes at a cost of expensive datasets that are difficult to collect and are often limited to one

language, like English. SQuAD1.1, SQuAD2.0, and CoQA are examples of datasets used

for English Question Answering models. Some alternative datasets have been developed

in languages such as Chinese (such as span-extraction MRCs and user-query-log-based

DuReaders), Korean, and French. Hence, we use a recently introduced Romainan QA

dataset known as Romanian IT Dataset (RoITD). RoITD is a completely Romanian natu-

ral language dataset with 9575 QA pairings created by crowd workers. The QA pairings
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were created using 5043 Romanian Wikipedia pages about IT and home products. 5103

of the questions are ’possible,’ which means the right answer is within the offered para-

graph, while 4472 are ’not possible,’ which means the provided response is only probable

and cannot be regarded accurate. The dataset was assessed by fine-tuning the QA model

using the transformer-based pretrained models (1) Multilingual BERT, (2) DistilBERT, (3)

Romanian BERT (RoBERT), and (4) XLM-R.

In addition to using the dataset, we extend the RoITD dataset beyond question an-

swering task to formulate a domain classification based on the type of question known as

Question classification task. It aids in restricting the search area to a certain sort of query,

resulting in a lot better response in QA tasks. The dataset is extracted based on the type of

questions such as “Ce”, “Cum”, “De ce”, “Care”, “Unde”, “Când”, and “Caror”. The de-

signed dataset is evaluated using various interpretable models such as SVM, Naive Bayes,

Decision Trees, Logistic Regression, and Tsetlin Machine. It gives the advantage of having

feasible QA model for chatbot application building a prerequisite question classification

model.

In addition to this, we also used outlier detection to make the model robust. Machine

learning (ML) models provide enormous versatility due to their ability to learn from a

wide range of data sources, including structured and semi-structured data. This learning

flexibility, however, necessitates that the model is able to cope with outliers, which in this

case are data points that deviate significantly from the training dataset. Because these

sorts of outliers are frequently found after model deployment, the model must be capable

of detecting them while running to avoid performance degradation. A novel generative

deep learning model based on Generative Adversarial Networks (GAN) and Variational

AutoEncoders (VAE) that differentiates inliers from outliers using uniform distributions

generated by variational autoencoders has been used in this report. Using the generative

and adversarial elements of the model, three major losses (i.e., reconstruction loss, KL-

divergence, and discriminative loss) are generated. As a result, we compare Alphagan to

more known algorithms like Kmeans, LOF, OC-SVM, and DBSCAN. Ww demonstrated

that first most efficient method is Alphagan an F1-score of 67.8% and an accuracy of 96%.

Out of 9157 Questions/Answers 8803 were correctly predicted. And out of 706 positive

Q/A, 352 were predicted as outliers.

We also designed a pipeline for the extraction of answers. We used Haystack as the

platform for massive document collections to create endto-end question answering systems.
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Among various, Haystack offers significant advantages in document retrieval, as well as

integration of pretrained models from Hugginface. Haystack provides a comprehensive

framework for extracting information from Elasticsearch, which aids in retrieving context

for BERT-based QA.

We then use the RoITD dataset to evaluate on various models such as bert-base-multilingual-

uncased (mBERT), bert-base-romanian-uncased-v1 (romBERT), distilbert-base-multilingual-

cased (distilBERT), and ALR-BERT-cased (Romanian ALBERT). We employed two eval-

uation metrics (i.e., EM and F1-score) to assess MRC model performance on our dataset,

consistent with evaluations on English SQuAD. It was observed that most of the most of

the models performs almost similar for EM. However, there was significant difference in

F1-Score. We also made comparison for execution of each answer for the selected baseline

models. We observed that execution time of all selected algorithms are not significantly

distinct based on search algorithms but showed huge impact based on the baseline models.

In all brevity, selection of models seems more important than the search algorithms for

answer extraction.

In addition to this, we also implement the the response from the model into chatbot

using DialogFlow. We used Pepper as the chatbot platform and implemented on Google

Cloud Service. First we trained the model using the selected baselines and then hosted it

using google cloud service (GCS). GCS is then interacted to google dialogflow in order to

generate a chatbot interface. The dialogflow is then linked to Pepper where it fetches the

response and display it to the user. The bottleneck in this approach was the time it takes

to load the trained bert model into the docker. Since, dialogflow only waits for 5 seconds,

the response is empty. Hence, to tackle this problem we ran bert model in the docker

continuously and fetched the response which reduced the response time below 3 seconds.

In addition to chatbot interface, it was also implemented in web interface as demonstrate in

this project.

We extend the QA system using Bayesian Inference. It uses next best answer using

bayesian inference. We verified our hypothesis that suppressing the top prediction and up-

dating the probability of the remaining tokens would drive the model to explore additional

options, which would likely increase the model’s recall. We evaluated our approach, we

applied softmax function on the model’s output logits. The highest probability is replaced

by a 0 and the bayesian update step is performed. Following the prediction of the start

and end indices, the correct and predicted responses are run through a string normalization
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procedure. Two answers may indicate the same thing but are not an exact match. Because

it is less probable that the projected response would match the true answer character for

character, we abstract the answer into a set of tokens and use the intersection of the two

sets of tokens to evaluate performance.

At last we explored the knowledge graphs for Question answering. Despite significant

advancements in QA processes over the last decade, the most accurate current approaches

use a mix of the language model (LM) and knowledge graph (KG). To integrate these

techniques, the model must be capable of identifying information from a big KG and then

performing joint reasoning between the QA context and KG structure. QA-GNN is an end-

to-end hybrid LM-KG model created particularly for QA tasks, in which the LM encodes

the QA context before retrieving KG subgraphs. QA-GNN performs QA tasks by com-

bining relevance scoring and joint reasoning. Relevance score is performed by assessing

the significance of each KG node in relation to the QA query provided. Joint reasoning

entails connecting the question context to the KG in order to generate a joint graph that

merges these two modalities into a single working graph. Hence, we integrate KG into our

QA framework. In order to do so, there was a necessity to perform a semantic analysis

on the text that extracts the fundamental structure composed of Subject, Predicate and Ob-

ject. Here subject and object constituted nodes and the predicate constituted edges. In our

case computed the embeddings for nodes and edges. We used series of tuples containing

(context, question, answer), trained on Encoder-Decoder Model with attention using cat-

egorical cross-entropy loss function. We then used smaller dataset and trained again but

with anchor loss function. Experiments and results showed that the model struggles with

the dataset since the implementation of the anchor loss strategy presents some difficulties

in achieving high performance.
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7.2 Next steps

Question-answer (QA) is a rapidly developing domain. We have identified several new

approaches that will work towards QA domain advancement. Of these, entailment trees,

extra-linguistic contexts, and neural natural logic inference have been identified as the most

promising. In this section, we will introduce each of these techniques, along with areas of

future work.

7.2.1 Entailment Trees

Entailment trees rely on known facts from intermediate conclusions to form multi-

premise entailment steps to form a tree that identifies the question and appropriate an-

swer [57]. By clearly defining the chain of reasoning between the input question and

chosen answer, entailment trees offer a potential solution to the missing provided ratio-

nale in other QA models. Advantages to providing a clear pathway between the QA pair

include easier error identification or potential advancement of interactive machine learning

techniques. Figure 7.1 provides an example of a multi-step entailment tree, which is com-

prised of distinct, multi-faceted textual entailment steps [55,57,120]. In support of this QA

method, Dalvi et. al. have compiled a multi-step entailment dataset known as ENTAIL-

MENTBANK [57]. ENTAILMENTBANK is comprised of 1,840 QA pairs along with their

corresponding multi-step entailment trees and includes both large and small multi-step en-

tailment problems. The entailment trees are formed using advanced annotators and contain

an average of 2.7 entailment steps and 6.6 nodes.

Three primary explanation tasks are defined using ENTAILMENTBANK where a valid

entailment tree is generated for a provided QA pair when given–(1) all relevant sentences,

which are defined as the leaves of the entailment tree, (2) all relevant sentences along with

some distractor sentences, or (3) a complete corpus [57]. The purpose of the entailment

tree is to separate the generated derivation (i.e., line of reasoning), which illustrates the

way evidence points to the answer, from the pragmatics of deciding which portions of the

derivation should be provided to the user [57]. In other words, the correctness of the deriva-

tion is separated from the utility to allow for derivations to be evaluated more objectively.

Preliminary entailment tree QA results using ENTAILMENTBANK successfully demon-

strate the generation of reasonable trees [57]. When the model input included all necessary

142



Figure 7.1: Entailment tree formation process. The given hypothesis (green), which sum-
marizes the QA pair, is combined with a corpus or relevant text to create an entailment tree.
The entailment tree includes intermediate nodes (blue) to illustrate how the hypothesis is
connected to the corpus. [57]

raw facts, 35% of trees contained zero errors. Additionally, it is suggested that models

trained using ENTAILMENTBANK may be generalized to other domains. Figure 7.2 pro-

vides an example of two medium-complexity entailment trees generated using this process,

which takes approximately 20 minutes for each question [57].

Additional work is needed to develop this technique for advanced applications, although

initial studies have demonstrated this as a technique with substantial promise. Error anal-

ysis of 100 entailment steps randomly sampled from imperfect entailment trees revealed

that 30% were correct and 13% were nearly correct [57]. This indicated that invalid trees

can still contain good steps. Additionally, invalid individual steps were caused by repeti-

tion, invalid entailment, and mis-evaluation and irrelevance. In the case of repetition, the

derived conclusion repeats a portion of the input (41%) [57]. This has been attributed to

high word overlap between the intermediate conclusions and input and may be improved

by modifying the loss function so that the model generates unique conclusion statements

compared with the input. In the case of invalid entailment, the model uses knowledge that

is not provided in the input but is instead present elsewhere in the input context so that the

conclusion does not follow from the input (47%) [57]. A correction for this may lie in the
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implementation of a more interactive approach where entailment steps are generated indi-

vidually before moving onto the next step. Finally, mis-evaluation and irrelevance errors

occur when the conclusion is correct but differs from gold or cannot prove the hypothesis

(12%) [57]. A possible correction method lies in improvement of the evaluation metric

including modification of the loss function to include a goal-directed term that encourages

intermediates closer to H. Other errors found in imperfect trees include incorrect or missing

leaves (50%), imperfect evaluation (25%), correct leaves with invalid steps (20%), discon-

nected trees (5%), and correct steps with incorrect intermediate conclusions (<5%) [57].

Figure 7.2: Two medium-complexity entailment tree examples. The hypotheses are the
root nodes, identified as H (green). Intermediate conclusions are shown in blue. [57]

7.2.2 Extra-Linguistic Contexts

Questions may have different answers depending on the extra-linguistic contexts of

when and where the question is asked. This often means that the answers to questions

with extra-linguistic contexts can change over time, requiring consistent updating with the
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most relevant information. Examples of these types of questions are illustrated in Figure

7.3. Questions with extra-linguistic contexts form a significant fraction of QA pairs, for

instance approximately 16.5% of NQ-Open [231]. Zhang and Choi recently introduced an

open-retrieval QA dataset named SITUATEDQA to incorporate temporal and geographical

context when generating answers to input questions [231]. SITUATEDQA is comprised

of temporal or geographical-dependent questions that are already present in existing QA

datasets. Alternative contexts and their corresponding responses are identified via crowd-

sourcing. Incorporating extra-linguistic contexts into language models allows for consistent

updating of the corpus to maintain relevancy of generated answers.

Figure 7.3: Sample questions with variable answers that depend on the geographical or
temporal context. [231].

Current available QA systems do not consider extra-linguistic contexts. To account for

extra-linguistic contexts in QA models, two tasks should be incorporated into the model–

(1) what facts change over various extra-linguistic contexts and (2) how these facts change

[231]. Other potential tasks include the consideration of who is asking the question, which

would allow for individual preferences to be accounted for. In addition to maintaining

corpus relevancy, these tasks can also be used to address errors caused by ambiguity.
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7.2.3 Neural Natural Logic Inference

Neural natural logic inference works to improve QA models using a neural-symbolic

QA approach as a means of integrating natural logic reasoning into deep learning archi-

tectures [188]. This allows for the model to gradually bridge a hypothesis and candidate

premise by following natural logic inference steps to construct proof paths [188]. To de-

cide whether a premise entails a given hypothesis, entailment scores between intermediate

hypothesis and the candidate premise are calculated. This natural logic reasoning method

produces a tree-like heirarchical structure. As a result, the hypotheses and premise is em-

bedded in hyperbolic space instead of euclidean space. This allows for more precise repre-

sentations to be acquired.

Figure 7.4: Summary of seven natural logic relations. [136, 188]

Figure 7.5: Example of the natural logic proof process, which begins with the provided
hypothesis "rodents consume plants" to determine the premise "squirrels eat nuts". Labels
located at the node edges define the logical relationships between the associated sentences.
[188]

Natural logic proving occurs by the insertion, deletion, or mutation of words that fol-

low monotonicity calculus or projectivity [188]. Seven primary logic relationships are

summarized in Figure 7.4 [188]. Recently, Shi et. al. introduced the Neural Natural Logic
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Inference (NeuNLI) QA framework to introduce neural natural logic inference [188]. This

framework uses natural logic inference steps to bridge a given hypothesis and candidate

premise by forming proof paths. This process starts by converting a question and asso-

ciated potential answers to create a hypothesis in the form of declarative sentences. The

original hypotheses are then rewritten to determine intermediate hypotheses. This process

is repeated until a proof tree has been created for each QA pair. An example of the pro-

cess is shown in Figure 7.5. The use of reasoning improves overall performance of the QA

model compared with models that do not incorporate reasoning.
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